首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of sodium acetylo-salicylate (2 g per os) on the thermoregulatory responses of 10 male subjects was studied by direct and indirect calorimetry during two tests : heat exposure at 37 degrees C and exercise (50 W) at 25 degrees C. Both test were performed twice : with salicylate treatment and with a placebo. 2. During heat exposure at 37 degrees C for 75 min, the rise in tympanic temperature (Tty) and in mean skin temperature Ts, the time course of heat losses by radiation (R), convection (C) and evaporation (E), and the metabolic rate (M), measured by oxygen consumption, were not altered by salicylate treatment. 3. During exercise, salicylate treatment did not affect the time course of Tty and Ts, (R + C) and M. However, salicylate treatment decreased the delay for triggering the evaporative response (E) to the thermal load; similarly, the increase in cutaneous blood flow was triggered sooner in subjected receiving salicylate than in controls. 4. In conclusion, these results suggest that, during exercise, the thermal controller triggers thermoregulatory responses during passive hyperthermia by heat exposure.  相似文献   

2.
3.
The effects of electroconvulsive shock (ECS) on rectal temperature (TR) and on protein synthesis in brain and liver were compared in rabbit, rat, and mouse. Protein synthesis status was assessed using an in vitro amino acid incorporation method which provides information equivalent to polyribosome profiles. In the rabbit, TR rose from 39.5 +/- 0.4 degrees C to 40.4 +/- 0.2 degrees C within 10 min following a single ECS, and significant hyperthermia persisted for at least 60 min. This effect was markedly attenuated in animals housed at 4 degrees C. In vitro protein synthesis activities of rabbit brain and liver preparations were significantly reduced following ECS only in those animals whose TR exceeded 40 degrees C. In the rat, ECS gave rise to a significant hyperthermia, but in no case did TR exceed 40 degrees C, and protein synthesis activity of brain supernatants was not affected. In the mouse, ECS reduced TR and had no effect on in vitro protein synthesis activity. These results demonstrate that the unique sensitivity of protein synthesis in rabbit tissues to electroconvulsive shock is a direct consequence of the hyperthermia that arises following ECS in this species.  相似文献   

4.
A consortium consisting of a Chlorella sorokiniana strain and a Ralstonia basilensis strain was able to carry out sodium salicylate biodegradation in a continuous stirred tank reactor (CSTR) using exclusively photosynthetic oxygenation. Salicylate biodegradation depended on algal activity, which itself was a function of microalgal concentration, light intensity, and temperature. Biomass recirculation improved the photobioreactor performance by up to 44% but the results showed the existence of an optimal biomass concentration above which dark respiration started to occur and the process efficiency started to decline. The salicylate removal efficiency increased by a factor of 3 when illumination was increased from 50-300 microE/m2.s. In addition, the removal rate of sodium salicylate was shown to be temperature-dependent, increasing from 14 to 27 mg/l.h when the temperature was raised from 26.5 to 31.5 degrees C. Under optimized conditions (300 microE/m2.s, 30 degrees C, 1 g sodium salicylate/l in the feed and biomass recirculation) sodium salicylate was removed at a maximum constant rate of 87 mg/l.h, corresponding to an estimated oxygenation capacity of 77 mg O2/l.h (based on a BOD value of 0.88 g O2/g sodium salicylate for the tested bacterium), which is in the range of the oxygen transfer capacity of large-scale mechanical surface aerators. Thus, although higher degradation rates were attained in the control reactor, the photobioreactor is a cost-efficient process which reduces the cost of aeration and prevents volatilization problems associated with the degradation of toxic volatile organic compounds under aerobic conditions.  相似文献   

5.
Mechanisms for the loss of muscle contractile function in hyperthermia are poorly understood. This study identified the critical temperature, resulting in a loss of contractile function in isolated diaphragm (thermal tolerance), and then tested the hypotheses 1) that increased reactive oxygen species (ROS) production contributes to the loss of contractile function at this temperature, and 2) eicosanoid metabolism plays an important role in preservation of contractile function in hyperthermia. Contractile function and passive force were measured in rat diaphragm bundles during and after 30 min of exposure to 40, 41, 42 or 43 degrees C. Between 40 and 42 degrees C, there were no effects of hyperthermia, but at 43 degrees C, a significant loss of active force and an increase in passive force were observed. Inhibition of ROS with the antioxidants, Tiron or Trolox, did not inhibit the loss of contractile force at 43 degrees C. Furthermore, treatment with dithiothreitol, a thiol (-SH) reducing agent, did not reverse the effects of hyperthermia. A variety of global lipoxygenase (LOX) inhibitors further depressed force during 43 degrees C and caused a significant loss of thermal tolerance at 42 degrees C. Cyclooxygenase (COX) inhibitors also caused a loss of thermal tolerance at 42 degrees C. Blockage of phospholipase with phospholipase A(2) inhibitors, bromoenol lactone or arachidonyltrifluoromethyl ketone failed to significantly prevent the loss of force at 43 degrees C. Overall, these data suggest that ROS do not play an apparent role in the loss of contractile function during severe hyperthermia in diaphragm. However, functional LOX and COX enzyme activities appear to be necessary for maintaining normal force production in hyperthermia.  相似文献   

6.
Ramadan AA  Hassan HM 《Theriogenology》1999,51(6):1183-1196
Uterine luminal proteins (ULP) collected from the genital tract of buffalo during the follicular (Group F) and luteal (Group L) phases of the estrous cycle were chromatographed using sephacryl S-200 gel. Five peaks were detected in each group. Different protein concentrations (10 to 200 microg) from Peaks I and V in each group were examined for immunological activity on polymorph nuclear leukocytic cells (PMNL) in vitro. All concentrations except 10 microg of ULP Peak I (< or = 250 kDa) in Group F enhanced phagocytic activity of PMNL. Peak V (56 kDa) in the same group enhanced phagocytic activity of PMNL only at low protein concentrations (10, 20 and 40 microg protein), while at greater concentrations (80, 150 and 200 microg protein) PMNL activity was suppressed. On the other hand, all protein concentrations from Peak 1 (> or = 250 kDa) in Group L suppressed PMNL activity in a dose-dependent manner. Proteins from Peak V (31 kDa) in Group L suppressed PMNL phagocytic activity at all concentrations but not to the same extent as in Peak I. Electrophoretic analysis of Peaks I and V in both groups revealed only 3 detectable protein bands (subunits) in Peak I and 1 detectable subunit in Peak V. Several additional proteins were probably not detected. The molecular weights of the detected subunits in Peaks I and V in Group F were greater than those in Group L as indicated by SDS-PAGE analysis. The results of this study show that ULP collected from buffalo possessed proteins that modulated phagocytic activity of PMNL in vitro. Proteins collected during the follicular phase, especially Peak I, enhanced phagocytic activity of the PMNL, whereas those collected during the luteal phase (Peaks I and V) suppressed activity. Changes in the molecular weights of ULP detected in this experiment may be related to the changes in phagocytic activity of PMNL tested in vitro.  相似文献   

7.
The effect of sodium nitroprusside-induced hypotension on the perfusion of the R3230 adenocarcinoma during local 42 degrees C hyperthermia was studied using a combination of intravital microscopy and laser Doppler flowmetry. Fischer 344 rats were implanted with dorsal skin flap window chambers containing the R3230Ac tumor and allocated to three treatment groups (34 degrees C with nitroprusside, 42 degrees C with nitroprusside, and 42 degrees C with 0.9% saline). After baseline observation at 34 degrees C, tumors were locally heated to 42 degrees C using a water bath and either 0.9% saline or nitroprusside sufficient to reduce blood pressure 20% below pretreatment baseline was infused. Nitroprusside at 34 degrees C decreased tumor vascular conductance 40% with no effect on the diameter of arterioles entering the tumor. The diameter of arterioles entering 42 degrees C heated tumors increased 35% independent of blood pressure change. Saline at 42 degrees C had no effect on tumor vascular conductance; however, nitroprusside at 42 degrees C increased tumor vascular conductance 55%. Local 42 degrees C tumor heating, combined with a moderate reduction in blood pressure with nitroprusside, overrides the vascular steal effect associated with reduced perfusion pressure alone and results in improved tumor perfusion. Observations of the effect of vasodilator substances on normothermic tumor perfusion cannot be extrapolated to situations where moderate hyperthermia is used.  相似文献   

8.
Cells of the Escherichia coli dnaE(Ts) dnaE74 and dnaE486 mutants die after 4 h of incubation at 40 degrees C in Luria-Bertani medium. Cell death is preceded by elongation, is inhibited by chloramphenicol, tetracycline, or rifampin, and is dependent on cell density. Cells survive at 40 degrees C when they are incubated at a high population density or at a low density in conditioned medium, but they die when the medium is supplemented with glucose and amino acids. Deletion of recA or sulA has no effect. We isolated suppressors which survived for long periods at 40 degrees C but did not form colonies. The suppressors protected against hydroxyurea-induced killing. Sequence and complementation analysis indicated that suppression was due to mutation in the cydA gene. The DNA content of dnaE mutants increased about eightfold in 4 h at 40 degrees C, as did the DNA content of the suppressed strains. The amount of plasmid pBR322 in a dnaE74 strain increased about fourfold, as measured on gels, and the electrophoretic pattern appeared to be normal even though the viability of the parent cells decreased 2 logs. Transformation activity also increased. 4',6'-diamidino-2-phenylindole staining demonstrated that there were nucleoids distributed throughout the dnaE filaments formed at 40 degrees C, indicating that there was segregation of the newly formed DNA. We concluded that the DNA synthesized was physiologically competent, particularly since the number of viable cells of the suppressed strain increased during the first few hours of incubation. These observations support the view that E. coli senses the rate of DNA synthesis and inhibits septation when the rate of DNA synthesis falls below a critical level relative to the level of RNA and protein synthesis.  相似文献   

9.
The hemodynamic responses to vasoconstrictor agents are blunted during heating in anesthetized rats. It is unknown whether reflex neural responses to these agents are also altered during hyperthermia. Therefore, the purpose of this study was to determine the effect of hyperthermia on the hemodynamic and baroreflex-mediated sympathetic neural responses to vasoactive agents in conscious, unrestrained rats. The splanchnic sympathetic nerve activity (SpNA) and systemic and regional hemodynamic responses to injections of phenylephrine and sodium nitroprusside were measured during normothermia (37 degrees C) and hyperthermia (41.5 degrees C). The hemodynamic responses to phenylephrine and sodium nitroprusside were blunted with heating, whereas the SpNA responses to both agents were augmented or unchanged. At 41.5 degrees C, the baroreflex curves relating heart rate (HR) and SpNA to mean arterial blood pressure were shifted to the right. The operating range and gain of the blood pressure (BP)-HR reflex were significantly reduced during heating, whereas the operating range of the BP-SpNA reflex was augmented at 41.5 degrees C. These results indicate that heating alters the cardiovascular and sympathetic neural responses to vasoactive agents in vivo. Furthermore, the data suggest that heating differentially affects arterial baroreflex control of HR and SpNA, shifting both curves toward higher BP values but selectively attenuating baroreflex control of HR.  相似文献   

10.
The functionality of polymorphonuclear leukocytes (PMNL) and the exact process of the protective program employed by these cells in response to the heat shock (HS) remain ill-defined and debated. Particularly, the mechanism of phagocytic impairment induced by the HS and the molecular events associated with the delay of apoptosis used by these cells in such condition have given conflictual data. The aim of the present work is to study the consequences of the HS in different pathways involved in human PMNL apoptosis and subsequently in human PMNL phagocytic function. We demonstrated that HS (41 degrees C, 1 h) preconditioning induced inhibition of spontaneous PMNL apoptosis observed at 18 h in control cells incubated at 37 degrees C. This inhibition was characterized by absence of morphological nuclear changes, decrease of DNA fragmentation, low level of annexin V expression and decrease of caspase-3 activity. In parallel, HS increased both Hsp70 and Mcl-1 protein levels in PMNL. Phagocytosis of latex beads by PMNL was inhibited by HS (41 degrees C, 1 h) preconditioning despite an upregulation of CD11b, CD16 and CD47. Moreover, HS induced prolonged F actin depolymerization and inhibited both Rac and Cdc42 activation in PMNL. Finally, our results identify a new function of Mcl-1 in HS protection against apoptosis.  相似文献   

11.
The effect of two different thawing temperatures on frozen boar semen viability, in vitro fertilizing capacity and chromatin condensation and stability was studied. Freeze-thaw motility, normal apical ridge (NAR), in vitro fertilizing (IVF) capacity and chromatin condensation and stability were evaluated after thawing at 42 degrees C, 40s and 50 degrees C, 40s. Chromatin condensation degree was determined by flow cytometry, using propidium iodide as fluorochrome intercalating agent, and chromatin stability was evaluated by the same procedure after inducing sperm chromatin decondensation with ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS). The results showed that thawing straws at 42 degrees C, 40s significantly reduced motility compared to straws thawed at 50 degrees C, 40s. NAR, penetration, monospermy and polyspermy were not different between the two groups of samples thawed at different temperatures. Chromatin was significantly more compact when thawing was performed at 50 degrees C, but its stability did not show any difference relative to thawing at 42 degrees C. It is suggested that the interactions involved in chromatin overcondensation had a non-covalent nature.  相似文献   

12.
The effect of severe hyperthermia on the circulatory function was studied in dogs. Arterial pressure was maintained at the normal level, cardiac output increased at the core temperature of about 40 degrees C. An abrupt fall of the arterial pressure and cardiac output was observed at the rectal temperature of about 41 degrees C. The results suggest that a decrease in the cardiac output during severe hyperthermia is due to the fall of the central venous pressure and to the increase of the vascular compliance.  相似文献   

13.
Exposure to an open field is psychologically stressful and leads to an elevation in core temperature (T(c)). Methyl scopolamine (MS), a muscarinic antagonist, and pyridostigmine (PYR), a carbamate that inhibits acetylcholinesterase, do not cross the blood-brain barrier and have little effect on T(c) in resting, nonstressed animals. However, we have found that MS has an antipyretic effect on T(c) that is caused by handling and cage-switch stress. PYR should act pharmacologically to reverse the effects of MS. To this end, we assessed the effects of MS and PYR on stress-induced hyperthermia. Male Sprague-Dawley rats at 90 days of age were housed individually at an ambient temperature of 22 degrees C. T(c) and motor activity were monitored by radiotelemetry in an open-field chamber. Rats were dosed intraperitoneally at 1200 with 1.0 mg/kg MS, 0.1 mg/kg PYR, a combination of MS and PYR, or saline and placed immediately inside the open-field chamber for 60 min. Stress-induced hyperthermia was suppressed immediately by MS and enhanced by PYR. T(c) only increased by 0.3 degrees C in the MS-treated animals. The hyperthermic response in the PYR group was nearly 0.6 degrees C above that of rats dosed with saline. Coadministration of PYR and MS led to a stress-induced hyperthermia response nearly identical to that of rats injected with saline. Overall, open-field stress exacerbated the effects of MS and PYR on body T(c) and provides support for a peripheral cholinergic mechanism that mediates stress-induced hyperthermia.  相似文献   

14.
Salicylate monooxygenase (EC: 1.14.13.1) has been produced and purified from Pseudomonas cepacia ATCC 29351 which has the ability to utilise salicylate as a sole carbon source. The bacterium was grown on a defined medium containing 2% (w/v) casamino acids and 0.15% (w/v) yeast extract at 25 degrees C; salicylate monooxygenase production was induced by the presence of up to 0.7% (w/v) sodium salicylate, to a level of approximately 2% of the soluble cell protein. The enzyme was purified over 50-fold, with a recovery of about 40%, by a combination of ion exchange and hydrophobic interaction chromatography. The purified enzyme had a specific activity of 14-15 U mg-1 protein and was essentially homogeneous.  相似文献   

15.
The ability of three strains of Lactobacillus acidophilus to survive and retain beta-galactosidase activity during storage in liquid nitrogen at -196 degrees C and during subsequent storage in milk at 5 degrees C was tested. The level of beta-galactosidase activity varied among the three strains (0.048 to 0.177 U/10 organisms). Freezing and storage at -196 degrees C had much less adverse influence on viability and activity of the enzyme than did storage in milk at 5 degrees C. The strains varied in the extent of the losses of viability and beta-galactosidase activity during both types of storage. There was not a significant interaction between storage at -196 degrees C and subsequent storage at 5 degrees C. The strains that exhibited the greatest losses of beta-galactosidase activity during storage in milk at 5 degrees C also exhibited the greatest losses in viability at 5 degrees C. However, the losses in viability were of much greater magnitude than were the losses of enzymatic activity. This indicates that some cells of L. acidophilus which failed to form colonies on the enumeration medium still possessed beta-galactosidase activity. Cultures of L. acidophilus to be used as dietary adjuncts to improve lactose utilization in humans should be carefully selected to ensure that adequate beta-galactosidase activity is provided.  相似文献   

16.
Clinical observations and experimental studies have shown that hyperthermia can provoke febrile seizures, which are the most common type of pathological brain activity in children. We previously demonstrated that hyperthermia produced a depression of GABAergic neurotransmission in the hippocampus of immature rats in vitro. To investigate the possible mechanisms through which hyperthermia may modulate GABAergic neurotransmission in the hippocampus, whole-cell voltage clamp recordings were performed on CA1 pyramidal neurons in the immature rat brain slices. We found that hyperthermia (38.4-40 degrees C) when compared with baseline temperature of 32 degrees C reduced the frequency of both spontaneous inhibitory post-synaptic currents (sIPSCs) and miniature IPSCs (mIPSCs). Also, hyperthermia decreased the amplitudes of mIPSCs and reduced the mIPSC decay time constants and charge transfer. Non-stationary noise analysis of mIPSCs suggested that the number of open post-synaptic receptors but not single channel conductance was reduced during hyperthermia. Activation of adenylyl cyclase with forskolin prevented, whereas protein kinase A inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide potentiated, the hyperthermia (40 degrees C)-induced depression of evoked IPSCs (evIPSCs). But protein kinase C activator phorbol 12, 13-dibutyrate (PDBu) did not significantly affect this depression of evIPSCs induced by hyperthermia. Furthermore, hyperthermia-induced depression of evIPSCs was attenuated by 4-aminopyridine, but not by BaCl(2). These results suggest that hyperthermia reduces GABA release from pre-synaptic terminals, in part by blocking the adenylyl cyclase-protein kinase A signaling pathway and activating pre-synaptic 4-aminopyridine-sensitive K(+) channels. Also, the changes in amplitude and decay time constant of the mIPSCs may suggest that hyperthermia also decreases post-synaptic GABA(A) receptor function.  相似文献   

17.
In cultured cells, salicylate has been shown to potentiate the induction of Hsp72 so that a mild heat stress (40 degrees C) in the presence of salicylate induces an Hsp72 response that is similar to a severe heat stress (42 degrees C). To determine whether salicylate can potentiate the myocardial Hsp70 response in vivo and confer protection from an ischemic stress, male Sprague-Dawley rats (250-300 g) were placed into 5 groups: (1) control, (2) salicylate only (400 mg/kg), (3) mild heat stress (40 degrees C for 15 minutes), (4) mild heat stress plus salicylate, and (5) severe heat stress (42 degrees C for 15 minutes). Twenty-four hours following salicylate treatment and/or heat stress, animals were anesthetized, their hearts rapidly isolated, and hemodynamic function evaluated using the Langendorff technique. Hsp72 content was subsequently assessed by Western blotting. Although salicylate in combination with a mild heat stress induced heat shock factor activation, only the hearts from severely heat-stressed animals (42 degrees C) demonstrated a significantly elevated myocardial Hsp72 content and a significantly enhanced postischemic recovery of left ventricular developed pressure and rates of contraction and relaxation. These results support the role for Hsp72 as a protective protein and suggest that neither salicylate treatment alone nor salicylate in combination with a mild heat stress potentiates the myocardial Hsp72 response.  相似文献   

18.
The effect of hyperthermia on the permeability of porcine lymphocyte plasma membranes for glyceraldehyde-3-phosphate dehydrogenase (G3PDH) substrates was investigated. The permeability increased in the temperature range of 40-45 degrees C. The temperature dependence for the permeability of G3PDH substrates and for cell viability was not well correlated.  相似文献   

19.
In view of the success of hyperthermia as a modality in cancer treatment, we have studied its effect on chromosomes in combination with anticancer antibiotics. Three classes of chemicals, one with a non-delayed type of effect (adriamycin), one with a delayed type of effect (mitomycin C), and one with a truely radio-mimetic effect (bleomycin) were selected for study on human lymphocytes and Chinese hamster K-1 cells. Propane sultone was also included because its effect on plants is suppressed by hyperthermia. The data show increased because its effect on plants is suppressed by hyperthermia. The data show increased potential of these chemicals to induce chromosome aberrations when applied at temperatures higher than 37 degrees C, irrespective of the phase of cell cycle. The potentiation may be due to true synergism (bleomycin) of facilitation of entry of larger quantities of the drug (adriamycin). No potentiating effect was observed on the induction of sister chromatid exchanges (SCEs).  相似文献   

20.
We purified an intracellular esterase that can function as an S-formylglutathione hydrolase from the yeast Saccharomyces cerevisiae. Its molecular mass was 40 kDa, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was 5.0 by isoelectric focusing. The enzyme activity was optimal at 50 degrees C and pH 7.0. The corresponding gene, YJLO68C, was identified by its N-terminal amino acid sequence and is not essential for cell viability. Null mutants have reduced esterase activities and grow slowly in the presence of formaldehyde. This enzyme may be involved in the detoxification of formaldehyde, which can be metabolized to S-formylglutathione by S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号