首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasma phospholipid transfer protein (PLTP) is thought to be involved in the remodeling of high density lipoproteins (HDL), which are atheroprotective. It is also involved in the metabolism of very low density lipoproteins (VLDL). Hence, PLTP is thought to be an important factor in lipoprotein metabolism and the development of atherosclerosis. We have overexpressed PLTP in mice heterozygous for the low density lipoprotein (LDL) receptor, a model for atherosclerosis. We show that increased PLTP activity results in a dose-dependent decrease in HDL, and a moderate stimulation of VLDL secretion (相似文献   

2.
Animals of various species are widely used as models with which to study atherosclerosis and the lipoprotein metabolism. The objective of this study was to investigate the lipoprotein profiles in Wistar rats and New Zealand white rabbits with experimentally induced hyperlipidemia by means of ultracentrifugation. The Schlieren curves were utilized to compare suckling and adult rat sera to determine whether aging causes alterations in lipoprotein profiles. A striking feature of the data is the high concentration of low-density lipoproteins (LDL), (>5.2 mmol/l cholesterol) in the 2-week old rat serum pool which was greatly decreased in the 3-weeks rat serum pool (<1.3 mmol/l cholesterol). Additional experiments were performed to permit a direct comparison of the amounts of lipoprotein present in rat sera in experimental hyperlipidemia post-Triton WR 1339 administration. Rapid changes in concentrations in very low-density lipoproteins (VLDL), LDL and high-density lipoproteins (HDL) were observed after Triton injection. The administration of Triton WR 1339 to fasted rats resulted in an elevation of serum cholesterol levels. Triton physically alters VLDL, rendering them refractive to the action of lipolytic enzymes in the blood and tissues, preventing or delaying their removal from the blood. Whereas the VLDL concentration was increased markedly, those of LDL and HDL were decreased at 20 h after Triton treatment. Rabbits were fed a diet containing 2% cholesterol for 60 days to develop hyperlipidemia and atheromatous aortic plaques. A combination of preparative and analytical ultracentrifugation was used to investigate of LDL aliquots, to prepare radioactive-labeled lipoproteins and to study induced hyperlipidemia in rabbits. Analytical ultracentrifugation was applied to investigate the LDL flotation peaks before and after cholesterol feeding of rabbits. Modified forms of LDL were detected in the plasma of rabbits with experimentally induced atherosclerosis. ApoB-containing particles, migrating as LDL, intermediate density lipoproteins and VLDL were the most abundant lipoproteins. Gamma camera in vivo scintigraphy on rabbits with radiolabeled lipoproteins revealed visible signals corresponding to atherosclerotic plaques of the aorta and carotid arteries.  相似文献   

3.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

4.
High-density lipoproteins (HDL) play an important role in protection against atherosclerosis by mediating reverse cholesterol transport - the transport of excess cholesterol from peripheral tissues to the liver for disposal. SR-BI is a cell surface receptor for HDL and other lipoproteins (LDL and VLDL) and mediates the selective uptake of lipoprotein cholesterol by cells. Overexpression or genetic ablation of SR-BI in mice revealed that it plays an important role in HDL metabolism and reverse cholesterol transport and protects against atherosclerosis in mouse models of the disease. If it plays a similar role in humans then it may be an attractive target for therapeutic intervention. We will review some of the recent advances in the understanding of SR-BI's physiological role and cellular function in lipoprotein metabolism.  相似文献   

5.
Increased concentration of low density lipoprotein (LDL) cholesterol or decreased level of high density lipoprotein (HDL) cholesterol are important risk factors for coronary atherosclerosis. However, an independent association of triglycerides (TG) with atherosclerosis is uncertain.The aim of this prospective study was to evaluate the relationship between serum lipid levels and the extent of coronary atherosclerosis in patients with suspected coronary artery disease (CAD) and no previous myocardial infarction who were not treated with lipids lowering therapy or low-lipid diet.The study was conducted in 141 patients (53.6 ± 7.8 years old; 32 female) who underwent a routine coronary angiography for CAD diagnosis. A modified angiographic Gensini Score (GS) was used to reflect the extent of coronary atherosclerosis. Fasting serum lipid concentrations were determined using cholesterol esterase/peroxidase (CHOD/PAP) enzymatic method for total cholesterol and its fractions and lipase glycerol kinase (GPO/PAP) enzymatic method TG evaluation. The association of Gensini Score with variables characterising lipid profile was analysed with the use of Pearson correlation (r co-efficient; p value).GS was positively correlated with total cholesterol (r = 0.404; p < 0.001), LDL cholesterol (r = 0.484; p < 0.001) and TG (r = 0.235; p = 0.005). There was a negative correlation between Gensini Score and HDL cholesterol (r = –0.396; p < 0.001).In angina pectoris patients with no previous myocardial infarction, the extent of coronary atherosclerosis is positively correlated with pro-atherogenic lipids, i.e. total cholesterol, LDL cholesterol and TG and negatively correlated with antiatherogenic HDL cholesterol.  相似文献   

6.
Until recently, research in experimental atherosclerosis focused primarily on nutritional influences on plasma lipids, lipoproteins, and atherosclerosis. We review here the results of recent studies of independent and interactive influences of psychosocial and reproductive influences on atherosclerosis in nonhuman primates. These studies have produced evidence that, as in human beings, individuals with certain personality characteristics who are frequently faced with stressful or challenging situations are at increased risk of coronary artery disease. Preliminary evidence suggests that this relationship may be mediated, in part, by heightened sympathetic arousal, i.e., cardiovascular hyperresponsiveness, to the environmental challenge. Also, as in human beings, evidence has been produced that certain negative behavioral and psychosocial variables can have a significant independent influence on plasma lipids. As regards reproductive influences, the cynomolgus macaque seems to share with premenopausal white women a relative protection against coronary artery atherosclerosis. This "female protection" against diet-induced atherosclerosis is abolished by ovariectomy, which also results in increased total plasma and low density lipoprotein (LDL) cholesterol concentrations. Subordinate social status also seems to abolish female protection in some individuals. Preliminary evidence suggests that subordinate females most liable to this loss of protection are those with apparent stress-induced chronic ovarian endocrine dysfunction, which, in turn, is associated with increased plasma LDL cholesterol and decreased plasma high density lipoprotein (HDL) cholesterol concentrations.  相似文献   

7.
Determination of the circulating levels of plasma lipoproteins HDL, LDL, and VLDL is critical in the assessment of risk of coronary heart disease. More recently it has become apparent that the LDL subclass pattern is a further important diagnostic parameter. The reference method for separation of plasma lipoproteins is ultracentrifugation. However, current methods often involve prolonged centrifugation steps and use high salt concentrations, which can modify the lipoprotein structure and must be removed before further analysis. To overcome these problems we have now investigated the use of rapid self-generating gradients of iodixanol for separation and analysis of plasma lipoproteins. A protocol is presented in which HDL, LDL, and VLDL, characterized by electron microscopy and agarose gel electophoresis, separate in three bands in a 2.5 h centrifugation step. Recoveries of cholesterol and TG from the gradients were close to 100%. The distribution profiles of cholesterol and TG in the gradient were used to calculate the concentrations of individual lipoprotein classes. The values correlated with those obtained using commercial kits for HDL and LDL cholesterol. The position of the LDL peak in the gradient and its shape varied between plasma samples and was indicative of the density of the predominant LDL class. The novel protocol offers a rapid, reproducible and accurate single-step centrifugation method for the determination of HDL, LDL, and VLDL cholesterol, and TG, and identification of LDL subclass pattern.  相似文献   

8.
Plasma cholesterol concentrations from White Carneau (WC) and Show Racer (SR) pigeons consuming a cholesterol-free grain diet averaged about 300 mg/dl, approximately 200 mg/dl as high density lipoproteins (HDL) and the remainder as low density lipoproteins (LDL). Consumption of a cholesterol-containing diet increased plasma cholesterol concentrations in both breeds to greater than 2000 mg/dl. Approximately one-half of this increase was as LDL with the remainder as beta-migrating very low density lipoproteins (beta-VLDL). There was little change in HDL concentration. LDL from cholesterol-fed animals had a greater net negative charge than control LDL, and was larger (Mr = 10 X 10(6) vs 3.2 X 10(60)) due to an increase in the number of cholesteryl ester molecules per particle. The principal apoprotein of LDL was apoB-100 with smaller amounts of apoA-I and several minor unidentified apoproteins. beta-VLDL was cholesteryl ester-rich, could be separated into two size populations by gel chromatography, and contained apoB-100 as its principal apoprotein. Apoprotein E was not detected in any of the plasma lipoproteins. HDL from control and cholesterol-fed animals was composed of a single class of particles with virtually identical composition resembling HDL2. The major apoprotein of HDL was apoA-I. There were no consistent quantitative or qualitative differences in the lipoproteins of the two breeds of pigeons that could help to explain the susceptibility to atherosclerosis of the WC or the resistance of the SR.  相似文献   

9.
Cholesterol stored in human adipose tissue is derived from circulating lipoproteins. To delineate the cholesterol transport function of LDL and HDL, the movement of radiolabelled esterified cholesterol and free cholesterol from labelled LDL and HDL to human adipocytes was examined in the present study. LDL and HDL were enriched and labelled in esterified cholesterol with [14C]cholesterol by the action of plasma lipid transfer proteins and lecithin-cholesterol acyltransferase. Doubly labelled (3H,14C) LDL and HDL were prepared by exchanging free [3H]cholesterol into the 14C-labelled lipoproteins. 14C-labelled lipoprotein and 3H-labelled lipoprotein were also prepared separately and mixed to yield a mixed doubly labelled lipoprotein. Relative to the total amount added, proportionally more free than esterified cholesterol was transferred to the adipocytes upon incubation with any doubly labelled LDL and HDL. The calculated mass of free and esterified cholesterol transferred, however, varied with different labelled lipoproteins. 3H- and 14C-labelled LDL or HDL transferred 2-3-fold more esterified than free cholesterol while the reverse occurred with the mixed doubly labelled LDL or HDL. Thus, free cholesterol-depleted particles preferentially transferred cholesterol ester to the fat cells. In the presence of the homologous unlabelled native lipoprotein, the transfers of free and esterified cholesterol from labelled LDL or HDL were specifically inhibited. Selective transfer of esterified cholesterol relative to apoprotein was also observed when esterified cholesterol uptake from both LDL and HDL was assayed along with the binding of 125I-labelled lipoprotein. The cellular accumulation of cholesterol ether-labelled HDL (a non-hydrolyzable analogue of cholesterol ester) exceeded that of cholesterol ester consistent with significant hydrolysis of the latter physiological substrate. These results demonstrate preferential transfer of free cholesterol and esterified cholesterol over apoprotein for both LDL and HDL in human adipocytes. Furthermore, the data suggest that the cholesterol ester transport function of LDL and HDL can be enhanced by free cholesterol depletion and cholesterol ester enrichment of the particles, and affirms a role for adipose tissue in the metabolism of lipid-modified lipoproteins.  相似文献   

10.
These studies were conducted to determine the effects of exercise training on plasma lipoprotein levels and metabolism in the guinea pig to evaluate potential utilization of this model for studies of exercise-mediated effects on the regulation of sterol and lipoprotein metabolism and atherosclerosis regression. Male guinea pigs (n = 5 per group) were randomly assigned to either a control or an exercise group. The exercise protocol consisted of a 7-week training program, 5 days/wk on a rodent treadmill. Final speed and duration were 33 meters/min for 30–40 min per session. Guinea pigs in the exercise group had 33% lower plasma triacylglycerol concentrations (P < 0.01), 66% higher HDL cholesterol levels (P < 0.05) and 31% lower plasma free fatty acids (P < 0.05) than guinea pigs from the non-exercised group. In addition, lipoprotein lipase activity in the heart was 50% higher (P < 0.025) in guinea pigs allocated to the exercise protocol. Exercise training resulted in modifications in composition and size of lipoproteins. The concentrations of free cholesterol in LDL and HDL were higher in the exercised guinea pigs. The LDL peak density values were lower in guinea pigs from the exercise group compared to controls suggesting that exercise training resulted in larger LDL particles. In contrast, no significant effects due to exercise were observed in hepatic cholesterol concentrations, hepatic HMG-CoA reductase activity or LDL binding to guinea pig hepatic membranes. These data indicate that exercise had a more pronounced effect on the intravascular processing of lipoproteins than on hepatic cholesterol metabolism. In addition, the pattern of changes in guinea pig lipoprotein metabolism, in response to exercise training, was similar to reported effects in humans.  相似文献   

11.
Serum low-density lipoproteins (LDL)_and high-density lipoproteins (HDL) were prepared by gradient ultracentrifugation and dialysis from 12 healthy subjects and 15 patients with coronary heart disease and hyperlipoproteinemia. In both lipoprotein fractions cholesterol and lipid peroxides were determined. The effect of these lipoproteins on spontaneous prostacyclin biosynthesis in rat aortic slices was studied.Serum lipoproteins were susceptible to peroxidation during the preparation procedure. LDL were more prone to peroxidation than HDL. Little lipid peroxidase were formed in lipoproteins when calcium ions had been removed by EDTA, and when butylated hydroxytoluene (BHT) was present at all stages of their preparation. LDL when prepared without these precautions either from healthy subjects or from patients with coronary heart diseases markedly suppressed prostacyclin generation by rat aortic slices. This inhibition to LDL-lipid peroxides. Peroxide-low LDL prepared from most of the healthy subjects and patients with coronary heart disease and concomitant hyperlipoproteinemia, did not inhibit prostacyclin biosynthesis. However, in one quarter of the patients. LDL was inhibitory. Consequently, in some patients with coronary heart disease, there operate unknown mechanisms which are responsible for the inhbibitory activity of LDL on prosctacylin generation.  相似文献   

12.
We examined the association between rate of cholesterol esterification in plasma depleted of apolipoprotein B-containing lipoproteins (FER(HDL)), atherogenic index of plasma (AIP) [(log (TG/HDL-C)], concentrations, and size of lipoproteins and changes in coronary artery stenosis in participants in the HDL-Atherosclerosis Treatment Study. A total of 160 patients was treated with simvastatin (S), niacin (N), antioxidants (A) and placebo (P) in four regimens. FER(HDL) was measured using a radioassay; the size and concentration of lipoprotein subclasses were determined by nuclear magnetic resonance spectroscopy. The S+N and S+N+A therapy decreased AIP and FER(HDL), reduced total VLDL (mostly the large and medium size particles), decreased total LDL particles (mostly the small size), and increased total HDL particles (mostly the large size). FER(HDL) and AIP correlated negatively with particle sizes of HDL and LDL, positively with VLDL particle size, and closely with each other (r = 0.729). Changes in the proportions of small and large lipoprotein particles, which were reflected by FER(HDL) and AIP, corresponded with findings on coronary angiography. Logistic regression analysis of the changes in the coronary stenosis showed that probability of progression was best explained by FER(HDL) (P = 0.005). FER(HDL) and AIP reflect the actual composition of the lipoprotein spectrum and thus predict both the cardiovascular risk and effectiveness of therapy. AIP is already available for use in clinical practice as it can be readily calculated from the routine lipid profile.  相似文献   

13.
Human lymphocytes respond optimally to mitogenic stimulation when cultured in serum-free medium supplemented with transferrin if fatty acids necessary for maximal proliferation are provided. Either lipoproteins or exogenous fatty acids support optimal lymphocyte responses. The current studies examined the role of cell surface receptors for low density lipoprotein (LDL) in the enhancement of lymphocyte proliferation. Support of lymphocyte growth by limiting concentrations of LDL was found to involve interaction of the lipoprotein with LDL receptors. Thus, modification of LDL by reductive methylation so as to inhibit receptor-mediated interactions markedly decreased the capacity of LDL to enhance lymphocyte proliferation. Moreover, growth of lymphocytes obtained from patients with LDL receptor-negative homozygous familial hypercholesterolemia was minimal when cultures were supplemented with low concentrations of LDL (less than 10 micrograms cholesterol/ml). LDL also enhanced lymphocyte proliferation by a receptor-independent mechanism since high concentrations (greater than or equal to 50 micrograms cholesterol/ml) supported growth of both normal and familial hypercholesterolemia lymphocytes. In contrast, support of lymphocyte proliferation by high density lipoprotein (HDL) subclass 3 was completely independent of LDL receptors. Thus, HDL3 enhanced responses of both normal and familial hypercholesterolemia lymphocytes in an equivalent concentration-dependent manner; this effect was not altered by reductive methylation of HDL3. One function of lipoproteins in this system may be the provision of fatty acids since oleic and linoleic acids enhanced DNA synthesis by both normal and familial hypercholesterolemia lymphocytes in the absence of lipoproteins. These results indicate that lipoproteins may provide fatty acids necessary for optimal proliferation of human lymphocytes by both LDL receptor-mediated and LDL receptor-independent interactions.  相似文献   

14.
The plasma cholesteryl ester transfer protein (CETP) plays a central role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport. There are conflicting views regarding whether or not excessive CETP activity is one of the risk factors of atherosclerosis. To study how much effect CETP can have on the profiles of plasma lipoproteins in vivo, we produced four strains of transgenic mouse that expressed different levels of human CETP gene. We analyzed seven groups of mice that had different levels of CETP expression. The cholesterol level of HDL, chylomicron (CM) and VLDL, intermediate density lipoprotein (IDL) and LDL were proportionally changed in association with plasma CETP concentrations (2.9 +/- 0.6 to 37.4 +/- 1.7 microg/ml) in an allelic dose-dependent manner. We further characterized one of the transgenic strains, CETP-4, by optimizing the experimental condition for the mouse model of atherosclerosis, and found that it would be useful for the development of therapeutics against atherosclerosis.  相似文献   

15.
Bovine luteal cells can utilize low density lipoprotein (LDL) or high density lipoprotein (HDL) as a source of cholesterol for steroidogenesis, and administration of PGF-2 alpha in vitro suppresses lipoprotein utilization. The objective of this study was to examine the mechanism by which PGF-2 alpha exerts this effect. Cultured bovine luteal cells received 0.25 microCi[14C]acetate/ml, to assess rates of de-novo sterol and steroid synthesis, with or without lipoproteins. Both LDL and HDL enhanced progesterone production (P less than 0.01), but caused a significant reduction in the amount of radioactivity in the cholesterol fraction. PGF-2 alpha treatment inhibited the increase in lipoprotein-induced progesterone synthesis (P less than 0.01), but did not prevent the reduction in de-novo cholesterol synthesis brought about by LDL or HDL. PGF-2 alpha alone reduced cholesterol synthesis (P less than 0.01), but it was not as effective as either LDL or HDL. Both lipoproteins and PGF-2 alpha also decreased the amount of radioactivity in the progesterone fraction (P less than 0.01), and the effect of PGF-2 alpha was similar to that of the lipoproteins. It is concluded that lipoproteins can enhance progesterone production and also suppress de-novo cholesterol synthesis in bovine luteal cells, but only the former effect of lipoproteins is inhibited by PGF-2 alpha. Therefore, it is suggested that PGF-2 alpha allows entry of lipoprotein cholesterol into the cell, but prevents utilization for steroidogenesis. In addition, PGF-2 alpha alone can suppress cholesterol synthesis, as well as decrease conversion of cholesterol to progesterone.  相似文献   

16.
The cholesterol transfer between human erythrocytes and main classes of serum lipoproteins (LP) from healthy donors and artery-coronary disease patients was studied (artery-coronary disease is the main manifestation of atherosclerosis). It is shown that low-density lipoproteins (LDL) are capable of transporting cholesterol to erythrocytes, which lack the specific receptors for LDL. The cell cholesterol content in comparison with erythrocytes incubated without LDL was increased by 11.4%. The effect was even higher in case of LDL, isolated from serum of artery-coronary subjects (the cell cholesterol content was increased by 33.8%). High-density lipoproteins (HDL) accept cholesterol from cell membranes. However, cholesterol-accepting properties of HDL from artery-coronary disease patients were suppressed as compared with normal HDL. Both discovered events must promote the cholesterol accumulation in cell membranes in atherosclerosis. As it is shown by the spin probe method, lipid peroxidation (LPO) causes the disturbance of the structural organization of LP and as the consequence of that--the increase of LDL cholesterol-donating ability and the decrease of HDL cholesterol-accepting ability. The greater LDL are oxidized, the more cholesterol they transport to erythrocytes during incubation. The greater is the level of HDL peroxidation, the stronger their cholesterol-accepting function is suppressed. These results suggest that LPO can play an important role in LP modification, the disturbance of their interaction with cell surface and the cholesterol accumulation in cells in atherosclerosis.  相似文献   

17.
LDL and HDL enriched in triglyceride promote abnormal cholesterol transport   总被引:2,自引:0,他引:2  
Hypertriglyceridemia induces multiple changes in lipoprotein composition. Here we investigate how one of these modifications, triglyceride (TG) enrichment, affects HDL and LDL function when this alteration occurs under conditions in which more polar components can naturally re-equilibrate. TG-enriched lipoproteins were produced by co-incubating VLDL, LDL, and HDL with cholesteryl ester (CE) transfer protein. The resulting 2.5-fold increase in TG/CE ratio did not measurably alter the apoprotein composition of LDL or HDL, or modify LDL size. HDL mean diameter increased slightly from 9.1 to 9.4 nm. Modified LDL was internalized by fibroblasts normally, but its protein was degraded much less efficiently. This likely reflects an aberrant apolipoprotein B (apoB) conformation, as suggested by its resistance to V8 protease digestion and altered LDL electrophoretic mobility. TG-enriched LDL ineffectively down-regulated cholesterol biosynthesis compared with control LDL at the same protein concentration, but was equivalent in sterol regulation when compared on a cholesterol basis. TG-enriched HDL promoted greater net cholesterol efflux from cholesterol-loaded J774 cells. However, cholesterol associated with TG-enriched HDL was inefficiently esterified by lecithin:cholesterol acyltransferase, and TG-enriched HDLs were poor donors of CE to HepG2 hepatocytes by selective uptake. We conclude that TG-enrichment, in the absence of other significant alterations in lipoprotein composition, is sufficient to alter both cholesterol delivery and removal mechanisms. Some of these abnormalities may contribute to increased coronary disease in hypertriglyceridemia.  相似文献   

18.
Low (LDL) and high density lipoproteins (HDL) stimulated prostacycline (PGI2) synthesis in rabbit and human aorta smooth muscle cells growing in culture. The lipoproteins were added to the cells in concentrations equal to that of cholesterol. It was shown that HDL exerted a stronger stimulating effect as compared to LDL. The maximal effect was observed with HDL3. HDL3 isolated from blood serum of healthy volunteers appeared to be more active in PGI2 synthesis promotion than those of CDH patients with documented coronary atherosclerosis. Purified Apo A-1 stimulated the transformation of [14C]arachidonic acid into the products of its metabolism with increased accumulation of 6-keto-PGF1 alpha among labeled metabolites. Estradiol (1.10(-7) M) showed a stimulating effect; norepinephrine (1.10(-6) M) and progesterone (1.10(-7) M) showed an inhibiting effect, whereas corticosterone (1.10(-6) M) and deoxycorticosterone (1.10(-6) M) did not influence the rate of LDL-dependent PGI2 synthesis.  相似文献   

19.
The aim of this study was to determine in humans whether oxidized cholesterol in the diet is absorbed and contributes to the pool of oxidized lipids in circulating lipoproteins. When a meal containing 400 mg cholestan-5alpha,6alpha-epoxy-3beta-ol (alpha-epoxy cholesterol) was fed to six controls and three subjects with Type III hyperlipoproteinemia, alpha-epoxy cholesterol in serum was found in chylomicron/chylomicron remnants (CM/RM) and endogenous (VLDL, LDL, and HDL) lipoproteins. In controls, alpha-epoxy cholesterol in CM/RM was decreased by 10 h, whereas in endogenous lipoproteins it remained in the circulation for 72 h. In subjects with Type III hyperlipoproteinemia, alpha-epoxy cholesterol was mainly in CM/RM. In vitro incubation of the CM/RM fraction containing alpha-epoxy cholesterol with human LDL and HDL that did not contain alpha-epoxy cholesterol resulted in a rapid transfer of oxidized cholesterol from CM/RM to both LDL and HDL. In contrast, no transfer was observed when human serum was substituted with rat serum, suggesting that cholesteryl ester transfer protein is mediating the transfer. Thus, alpha-epoxy cholesterol in the diet is incorporated into the CM/RM fraction and then transferred to LDL and HDL, contributing to lipoprotein oxidation. Moreover, LDL containing alpha-epoxy cholesterol displayed increased susceptibility to further copper oxidation in vitro. It is possible that oxidized cholesterol in the diet accelerates atherosclerosis by increasing oxidized cholesterol levels in circulating LDL and chylomicron remnants.  相似文献   

20.
Changes in lipoprotein surface potentials were studied by a positively charged analog as a spin probe. Low density lipoproteins (LDL) and high density lipoproteins (subfractions HDL2 and HDL3) of patients with coronary heart disease (CHD) were studied. CHD patients have revealed a significant decrease (by 14.4 +/- 0.3 mV) in LDL and an increase (by 6.3 +/- 2.0 mV) in HDL3 negative surface potential, as compared to the control. The increase in HDL2 surface potential in CHD patients was insignificant (1.9 +/- +/- 2.5 mV). The possible role of LDL and HDL3 surface potential changes in the mechanism of interaction of these types of lipoproteins with vascular wall and blood cellular membranes and in pathogenesis of CHD and atherosclerosis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号