首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Incubation of ground liver preparation isolated from vitamin E-deficient rats resulted in correlated in time changes of ubiquinone and ubichromenol contents and their ration in tissues. A suggestion is made on the possibility of ubiquinone and ubichromenol interconversions and of the existence of a system controlling (depending on a functional state of the organism) a certain ratio of the quinones contents in animal tissues. Possible biochemical role of ubichromenol in animals is discussed.  相似文献   

3.
The oxidation of rat red blood cells (RBC) by molecular oxygen was performed in an aqueous suspension with an azo compound as a free-radical initiator. The RBC were oxidized at a constant rate by a free-radical chain mechanism, resulting in hemolysis. The extent of hemolysis was proportional to the concentration of free radical. alpha-Tocopherol in RBC membranes suppressed the oxidation and hemolysis to produce an induction period. Tocopherol was constantly consumed during the induction period, and hemolysis developed when tocopherol concentrations fell below a critically low level. Among the membrane lipids, phosphatidylethanolamine, phosphatidylserine, and arachidonic acids were predominantly oxidized in the absence of tocopherol. In the presence of tocopherol, however, such lipid changes were suppressed during a 120-min incubation even when hemolysis started. Membrane proteins as well as lipids were oxidized. The formation of proteins with high molecular weight and concomitant decrease of the low-molecular-weight proteins were observed on gel electrophoresis with the onset of hemolysis. This study clearly showed the damage of RBC membranes caused by oxygen radical attack from outside of the membranes, and suggested that membrane tocopherol even below a critically low level could suppress lipid oxidation but that it could not prevent protein oxidation and hemolysis.  相似文献   

4.
The accumulation of [3H]noradrenaline ([3H]NA) and its oxidation products was studied in primary cultures of cerebral astrocytes. Astroglial accumulation of radiolabeled catecholamine ([3H] NA and oxidation products) was enhanced by manganese or iron, but it was inhibited by unlabeled NA, dopamine or ascorbate. Tissue:medium ratios of radioactivity increased as extracellular [3H]NA was oxidized. When extracellular oxidation was prevented by ascorbate, as confirmed by high performance liquid chromatography with electrochemical detection, either ouabain pretreatment or nominally Na+-free incubation medium inhibited approximately one-half of specific [3H]NA accumulation by rat (but not mouse) astrocytes. These observations suggest that neurological responses to trace metals and ascorbate may arise from the effects of these agents on the clearance of extracellular catecholamines. Astrocytes can accumulate oxidation products of NA more rapidly than they take up NA itself, but ascorbate at physiological concentrations prevents the oxidation process in extracellular fluid. Furthermore, in the presence of ascorbate, Na+-dependent transport mediates a significant component of NA accumulation in rat astrocytes.  相似文献   

5.
Prostaglandin and hydroxyeicosatetraenoic acid (HETE) production from arachidonic acid in bovine seminal vesicles and kidney as influenced by the addition of beta-carotene, retinol or alpha-tocopherol was studied. The major product formed was prostaglandin E2 (approximately 85% prostaglandin E2 of control), and its proportion decreased with increasing concentration of the additives, while the proportion of HETE increased. Prostaglandin and HETE production was considerably inhibited by beta-carotene and retinol, and to a lesser extent by alpha-tocopherol; HETE production was inhibited less than that of prostaglandin. It appears that beta-carotene, retinol and alpha-tocopherol influence both the cyclooxygenase and lipoxygenase pathways; this modulation of arachidonic acid oxidation by physiological compounds may have important in vivo implications.  相似文献   

6.
The recently discovered peroxyl radical scavenging properties of plasmalogen phospholipids led us to evaluate their potential interactions with alpha-tocopherol. The oxidative decay of plasmalogen phospholipids and of polyunsaturated fatty acids as induced by peroxyl radicals (generated from 2,2'-azobis-2-amidinopropane hydrochloride; AAPH) was studied in micelles using 1H-NMR and chemical analyses. In comparison with alpha-tocopherol, a 20- to 25-fold higher concentration of plasmalogen phospholipids was needed to induce a similar inhibition of peroxyl radical-mediated oxidation of polyunsaturated fatty acids. Plasmalogen phospholipids and alpha-tocopherol protected each other from oxidative degradation. In low-density lipoproteins (LDL) and micelles supplemented with plasmalogen phospholipids plus alpha-tocopherol, the peroxyl radical-promoted oxidation was additively diminished. The differences in the capacities to inhibit oxidation processes induced by peroxyl radicals between the plasmalogen phospholipids and alpha-tocopherol were less pronounced in the LDL particles than in the micelles. In conclusion, plasmalogen phospholipids and alpha-tocopherol apparently compete for the interaction with the peroxyl radicals. Oxidation processes induced by peroxyl radicals are inhibited in an additive manner in the presence of the two radical scavengers. The contribution of the plasmalogen phospholipids to the protection against peroxyl radical promoted oxidation in vivo is expected to be at least as important as that of alpha-tocopherol.  相似文献   

7.
Activated phagocytes oxidize the hormone melatonin to N1-acethyl-N2-formyl-5-methoxykynuramine (AFMK) in a superoxide anion- and myeloperoxidase-dependent reaction. We examined the effect of melatonin, AFMK and its deformylated-product N-acetyl-5-methoxykynuramine (AMK) on the phagocytosis, the microbicidal activity and the production of hypochlorous acid by neutrophils. Neither neutrophil and bacteria viability nor phagocytosis were affected by melatonin, AFMK or AMK. However these compounds affected the killing of Staphylococcus aureus. After 60 min of incubation, the percentage of viable bacteria inside the neutrophil increased to 76% in the presence of 1 mM of melatonin, 34% in the presence of AFMK and 73% in the presence of AMK. The sole inhibition of HOCl formation, expected in the presence of myeloperoxidase substrates, was not sufficient to explain the inhibition of the killing activity. Melatonin caused an almost complete inhibition of HOCl formation at concentrations of up to 0.05 mM. Although less effective, AMK also inhibited the formation of HOCl. However, AFMK had no effect on the production of HOCl. These findings corroborate the present view that the killing activity of neutrophils is a complex phenomenon, which involves more than just the production of reactive oxygen species. Furthermore, the action of melatonin and its oxidation products include additional activities beyond their antioxidant property. The impairment of the neutrophils' microbicidal activity caused by melatonin and its oxidation products may have important clinical implications, especially in those cases in which melatonin is pharmacologically administered in patients with infections.  相似文献   

8.
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Significantly reduced levels of these peptides were observed in neurodegenerative diseases and it may be suggested that this reduction may also result from the copper(II)-catalyzed oxidation. The studies of the interaction of copper(II) with neurokinin A and the copper(II)-catalyzed oxidation were performed. Copper(II) complexes of the neurokinin A (His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) and acetyl-neurokinin A (Ac-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) were studied by potentiometric, UV-Vis (UV-visible), CD (circular dichroism) and EPR spectroscopic methods to determine the stoichiometry, stability constants and coordination modes in the complexes formed. The histidine residue in first position of the peptide chain of neurokinin A coordinates strongly to Cu(II) ion with histamine-like {NH2, NIm} coordination mode. With increasing of pH, the formation of a dimeric complex Cu2H2L2 was found but this dimeric species does not prevent the deprotonation and coordination of the amide nitrogens. In the Ac-neurokinin A case copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination. To elucidate the products of the copper(II)-catalyzed oxidation of the neurokinin A and Ac-neurokinin A, liquid chromatography-mass spectrometry (LC-MS) method and Cu(II)/hydrogen peroxide as a model oxidizing system were employed.Oxidation target for both studied peptides is the histidine residue coordinated to the metal ions. Both peptides contain Met and His residues and are very susceptible on the copper(II)-catalyzed oxidation.  相似文献   

9.
10.
1-Palmitoyl-2-linoleoyl-phosphatidylethanolamine degrades relatively quickly when subjected to common storage and handling procedures. The degradation products consist of compounds in which double bonds in the sn-2 position acyl chain are partially oxidized and of products arising from the hydrolysis of the acyl ester bonds. Thin-layer chromatography (TLC), which is widely utilized to isolate and to ascertain the purity of phospholipids, does not readily separate the oxidation products from the parent lipid class. High-performance liquid chromatography (HPLC), however, employing a normal phase column and an isocratic, UV-transparent solvent system, can be employed to produce a rapid analytical or preparative of phosphatidylethanolamine (PE) from these degradative impurities.  相似文献   

11.
A multiple-label stable isotope dilution assay for quantifying glutathione (GSH), glutathione disulfide (GSSG), and glutathione sulfonic acid in erythrocytes was developed. As the internal standards, [13C3,15N]glutathione, [13C4,15N2]glutathione disulfide, and [13C3,15N]glutathione sulfonic acid were used. Analytes and internal standards were detected by LC–MS/MS after derivatization of GSH with iodoacetic acid and dansylation of all compounds under study. The calibration functions for all analytes relative to their respective isotopologic standards revealed slopes close to 1.0 and negligible intercepts. As various labelings of the standards for GSH and GSSG were used, their simultaneous quantitation was possible, although GSH was partly oxidized to its disulfide during analysis. The degree of this artifact formation of GSSG was calculated from the abundance of the mixed disulfide formed from unlabeled GSH and its respective standard. Thus, the detected GSSG amount could be corrected for the artifact amount. In this way, the amount of GSSG in erythrocytes was found to be less than 0.5% of the GSH concentration. Similar to GSSG, the detected amount of glutathione sulfonic acid was found to be formed at least in part during the analytical process, but the degree could not be quantified.  相似文献   

12.
Previous reports proposed that peroxynitrite (ONOO-) oxidizes alpha-tocopherol (alpha-TOH) through a two-electron concerted mechanism. In contrast, ONOO- oxidizes phenols via free radicals arising from peroxo bond homolysis. To understand the kinetics and mechanism of alpha-TOH and gamma-tocopherol (gamma-TOH) oxidation in low-density lipoprotein (LDL) (direct vs. radical), we exposed LDL to ONOO- added as a bolus or an infusion. Nitric oxide (.NO), ascorbate and CO2 were used as key biologically relevant modulators of ONOO- reactivity. Although approximately 80% alpha-TOH and gamma-TOH depletion occurred within 5 min of incubation of 0.8 microM LDL with a 60 microM bolus of ONOO-, an equimolar infusion of ONOO- over 60 min caused total consumption of both antioxidants. gamma-Tocopherol was preserved relative to alpha-TOH, probably due to gamma-tocopheroxyl radical recycling by alpha-TOH. alpha-TOH oxidation in LDL was first order in ONOO- with approximately 12% of ONOO- maximally available. Physiological concentrations of.NO and ascorbate spared both alpha-TOH and gamma-TOH through independent and additive mechanisms. High concentrations of.NO and ascorbate abolished alpha-TOH and gamma-TOH oxidation. Nitric oxide protection was more efficient for alpha-TOH in LDL than for ascorbate in solution, evidencing the kinetically highly favored reaction of lipid peroxyl radicals with.NO than with alpha-TOH as assessed by computer-assisted simulations. In addition, CO2 (1.2 mM) inhibited both alpha-TOH and lipid oxidation. These results demonstrate that ONOO- induces alpha-TOH oxidation in LDL through a one-electron free radical mechanism; thus the inhibitory actions of.NO and ascorbate may determine low alpha-tocopheryl quinone accumulation in tissues despite increased ONOO- generation.  相似文献   

13.
a-Tocopherol was reacted with cholesteryl linoleate hydroperoxides (Ch18:2-OOH) in the presence of an iron-chelate, Fe(III) acetylacetonate, at 37 degrees C in benzene. The reaction products were isolated and identified as four positional isomers of cholesteryl (8a-dioxy-alpha-tocopherone)-epoxyoctadecenoates and two positional isomers of cholesteryl (8a-dioxy-alpha-tocopherone)-octadecadienoates. The result indicates that the peroxyl radicals from Ch18:2-OOH react with the 8a-carbon radical of alpha-tocopherol to form the addition products.  相似文献   

14.
Volatile lipid oxidation products   总被引:3,自引:0,他引:3  
  相似文献   

15.
Oxidation of phospholipids results in chain-shortened fragments and oxygenated derivatives of polyunsaturated sn-2 fatty acyl residues, generating a myriad of phospholipid products. Certain oxidation products of phosphatidylcholine bind to and activate the human receptor for PAF, and these PAF-like lipids are potent, selective inflammatory mediators. Formation of PAF-like lipids is nonenzymatic and so their accumulation is unregulated. PAF-like lipids are produced in vivo in response to oxidative stresses and are responsible for attendant acute inflammatory responses. PAF-like lipids almost exclusively contain an ether-linked alkyl residue at the sn-1 position of the phosphatidylcholine backbone and molecular identification of these is facilitated by phospholipase A1 treatment to remove the bulk of the inactive phospholipids. The identity of biologically active species generated by oxidative fragmentation and oxidation can be elucidated by understanding relevant reactions leading to the formation of PAF-like lipids, and then their structure can be established by tandem mass spectrometry and chemical synthesis.  相似文献   

16.
Folate metabolism in the rat was investigated using radiolabelled 5-methyltetrahydropteroylglutamate (5-CH3-H4PteGlu) and its oxidation products. 5-CH3-H4PteGlu is absorbed completely from the intestine, although in some preparations it is an equimolecular mixture of C-6 epimers, only one of which is naturally present in biological systems. The methyl group is incorporated into non-folate compounds, including methionine and creatine. No evidence was observed for the oxidation of the methyl group of 5-CH3-H4PteGlu to form other folate types. The tetrahydrofolate moiety of 5-CH3-H4PteGlu is metabolized in a similar manner to folic acid, forming formyl folates and tissue polyglutamates, and is catabolized by scission. The triazine oxidation product of 5-CH3-H4PteGlu is not metabolized by the rat or its gut microflora. 5-Methyl-5,6-dihydropteroylglutamate, however, is assimilated into the folate pool, but is substantially broken down by passage through the gut. The possible implication of this in scorbutic diets is discussed.  相似文献   

17.
In the last decade, a multitude of secondary products have been identified from the radical and photosensitized oxidations of polyunsaturated lipids. These secondary products consist of oxygenated monomeric materials including epoxy-hydroperoxides, oxo-hydroperoxides, hydroperoxy epidioxides, dihydroperoxides, hydroperoxy bis-epidioxides, and hydroperoxy bicycloendoperoxides. More recently, higher molecular weight dimeric compounds have been identified from autoxidized methyl linoleate and linolenate. Decomposition of these oxidation products form a wide range of carbonyl compounds, hydrocarbons, furans, and other materials that contribute to the flavor deterioration of foods and that are implicated in biological oxidation. The interaction of some of these degradation products with DNA may be involved in cell-damaging reactions.  相似文献   

18.
Hydroethidine (HE) is a blue fluorescent dye that is intracellularly converted into red-emitting products on two-electron oxidation. One of these products, namely 2-hydroxyethidium, is formed as the result of HE superoxide anion-specific oxidation, and so HE is widely used for the detection of superoxide in cells and tissues. In our experiments we exploited three cell lines of different origin: K562 (human leukemia cells), A431 (human epidermoid carcinoma cells), and SCE2304 (human mesenchymal stem cells derived from endometrium). Using fluorescent microscopy and flow cytometry analysis, we showed that HE intracellular oxidation products accumulate mostly in the cell mitochondria. This accumulation provokes gradual depolarization of mitochondrial membrane, affects oxygen consumption rate in HE-treated cells, and causes cellular apoptosis in the case of high HE concentrations and/or long cell incubations with HE, as well as a high rate of HE oxidation in cells exposed to some stimuli.  相似文献   

19.
Beta-carotene and alpha-tocopherol are important antioxidants biologically, but whether their oxidized products are toxic or not remains to be discovered. Here, we chromatographically separated 5 pure products or isomeric mixtures from reaction mixtures of beta-carotene and reactive oxygens, and 17 lipid-radical scavenging products of alpha-tocopherol. The products were tested for mutagenicity using Salmonella typhimurium TA98, TA100, TA102, and TA104, in the presence and absence of S9. None showed mutagenicity against any of the four strains, or cytotoxicity that influenced the survival of the bacteria. Lipid-peroxides have been known to increase the formation of mutagens from dietary procarcinogens such as heterocyclic amines. So, we also measured the activity to increase 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) mutagenicity. The products from beta-carotene and alpha-tocopherol did not increase, but rather several of them suppressed, the mutagenicity of Trp-P-2. Thus, the products of beta-carotene and alpha-tocopherol formed after the antioxidant actions were not genotoxic.  相似文献   

20.
BACKGROUND: Much experimental evidence suggests that lipid oxidation is important in atherogenesis and in epidemiological studies dietary antioxidants appear protective against cardiovascular events. However, most large clinical trials failed to demonstrate benefit of oral antioxidant vitamin supplementation in high-risk subjects. This paradox questions whether ingestion of antioxidant vitamins significantly affects lipid oxidation within established atherosclerotic lesions. METHODS AND RESULTS: This placebo-controlled, double blind study of 104 carotid endarterectomy patients determined the effects of short-term alpha-tocopherol supplementation (500 IU/day) on lipid oxidation in plasma and advanced atherosclerotic lesions. In the 53 patients who received alpha-tocopherol there was a significant increase in plasma alpha-tocopherol concentrations (from 32.66 +/- 13.11 at baseline to 38.31 +/- 13.87 (mean +/- SD) micromol/l, p < 0.01), a 40% increase (compared with placebo patients) in circulating LDL-associated alpha-tocopherol (p < 0.0001), and their LDL was less susceptible to ex vivo oxidation than that of the placebo group (lag phase 115.3 +/- 28.2 and 104.4 +/- 15.7 min respectively, p < 0.02). Although the mean cholesterol-standardised alpha-tocopherol concentration within lesions did not increase, alpha-tocopherol concentrations in lesions correlated significantly with those in plasma, suggesting that plasma alpha-tocopherol levels can influence lesion levels. There was a significant inverse correlation in lesions between cholesterol-standardised levels of alpha-tocopherol and 7beta-hydroxycholesterol, a free radical oxidation product of cholesterol. CONCLUSIONS: These results suggest that within plasma and lesions alpha-tocopherol can act as an antioxidant. They may also explain why studies using < 500 IU alpha-tocopherol/day failed to demonstrate benefit of antioxidant therapy. Better understanding of the pharmacodynamics of oral antioxidants is required to guide future clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号