首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ferredoxin (Fd) and ferredoxin-NADP reductase on the light-induced spectral changes of cytochrome f (cyt f) were investigated with specific reference to their possible involvement in the cyclic electron transfort pathway of photosystem I (PS I). The steady-state level of photooxidation of reduced cytochrome f is decreased by ferredoxin but unaffected by either ferredoxin-NADP reductase alone or ferredoxin plus ferredoxin-NADP reductase when present in equimolar concentrations. These data are taken as evidence for a cyclic electron transport pathway of: PS I → “X” → Fd → (cyt f) → PC → PS I. The reduced ferredoxin could either reduce directly plastocyanin (PC) or via cytochrome f; the data do not allow differentiation between these two possibilities. However, neither ferredoxin-NADP reductase nor cytochrome b564 appear to serve as electron carriers in this pathway.  相似文献   

2.
Although photosystem I (PSI) cyclic electron transport is essential for plants, our knowledge of the route taken by electrons is very limited. To assess whether ferredoxin (Fd) donates electrons directly to plastoquinone (PQ) or via a Q-cycle in the cytochrome (cyt) b(6)f complex in PSI cyclic electron transport, we characterized the activity of PSI cyclic electron transport in an Arabidopsis mutant, pgr1 (proton gradient regulation). In pgr1, Q-cycle activity was hypersensitive to acidification of the thylakoid lumen because of an amino acid alteration in the Rieske subunit of the cyt b(6)f complex, resulting in a conditional defect in Q-cycle activity. In vitro assays using ruptured chloroplasts did not show any difference in the activity of PGR5-dependent PQ reduction by Fd, which functions in PSI cyclic electron transport in vivo. In contrast to the pgr5 defect, the pgr1 defect did not show any synergistic effect on the quantum yield of photosystem II in crr2-2, a mutant in which NDH (NAD(P)H dehydrogenase) activity was impaired. Furthermore, the simultaneous determination of the quantum yields of both photosystems indicated that the ratio of linear and PSI cyclic electron transport was not significantly affected in pgr1. All the results indicated that the pgr1 mutation did not affect PGR5-dependent PQ reduction by Fd. The phenotypic differences between pgr1 and pgr5 indicate that maintenance of the proper balance of linear and PSI cyclic electron transport is essential for preventing over-reduction of the stroma.  相似文献   

3.
In the C(4) plant maize (Zea mays L.), two ferredoxin isoproteins, Fd I and Fd II, are expressed specifically in mesophyll and bundle-sheath cells, respectively. cDNAs for these ferredoxins were introduced separately into the cyanobacterium Plectonema boryanum with a disrupted endogenous ferredoxin gene, yielding TM202 and KM2-9 strains expressing Fd I and Fd II. The growth of TM202 was retarded under high light (130 micromol/m(2)/s), whereas KM2-9 grew at a normal rate but exhibited a nitrogen-deficient phenotype. Measurement of photosynthetic O(2) evolution revealed that the reducing power was not efficiently partitioned into nitrogen assimilation in KM2-9. After starvation of the cells in darkness, the P700 oxidation level under far-red illumination increased significantly in TM202. However, it remained low in KM2-9, indicating an active cyclic electron flow. In accordance with this, the cellular ratio of ATP/ADP increased and that of NADPH/NADP(+) decreased in KM2-9 as compared with TM202. These results demonstrated that the two cell type-specific ferredoxins differentially modulate electron flow around photosystem I.  相似文献   

4.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

5.
A mathematical model is presented that describes the key steps of photosynthetic electron transport and transmembrane proton transfer in chloroplasts. Numerical modeling has been performed with due regard for regulatory processes at the donor and acceptor parts of photosystem (PS) I. The influence of pH-dependent activation of the Calvin cycle enzymes and energy dissipation in PS II (nonphotochemical quenching of chlorophyll fluorescence) on the light-induced redox transients of P700, plastoquinone, and NADP as well as on the changes in intrathylakoid pH and ATP level is examined. It is demonstrated that pH-dependent regulatory processes alter the distribution of electron fluxes on the acceptor side of PS I and the total rate of electron flow between PS II and PS I. The light-induced activation of the Calvin cycle leads to significant enhancement of the electron flow from PS I to NADP+ and attenuation of the electron flow to molecular oxygen.  相似文献   

6.
Ferredoxin:NADP+ oxidoreductase is an enzyme associated with the stromal side of the thylakoid membrane in the chloroplast. It is involved in photosynthetic linear electron transport to produce NADPH and is supposed to play a role in cyclic electron transfer, generating a transmembrane pH gradient allowing ATP production, if photosystem II is non-functional or no NADP+ is available for reduction. Different FNR isoforms have been described in non-photosynthetic tissues, where the enzyme catalyses the NADPH-dependent reduction of ferredoxin (Fd), necessary for some biosynthetic pathways. Here, we report the isolation and purification of two FNR isoproteins from wheat leaves, called FNR-A and FNR-B. These forms of the enzyme were identified as products of two different genes, as confirmed by mass spectrometry. The molecular masses of FNR-A and FNR-B were 34.3 kDa and 35.5 kDa, respectively. The isoelectric point of both FNR-A and FNR-B was about 5, but FNR-B appeared more acidic (of about 0.2 pH unit) than FNR-A. Both isoenzymes were able to catalyse a NADPH-dependent reduction of dibromothymoquinone and the mixture of isoforms catalysed reduction of cytochrome c in the presence of Fd. For the first time, the pH- and ionic strength dependent oligomerization of FNRs is observed. No other protein was necessary for complex formation. The putative role of the two FNR isoforms in photosynthesis is discussed based on current knowledge of electron transport in chloroplasts.  相似文献   

7.
Addition of NADPH to osmotically lysed spinach chloroplasts results in a reduction of the primary acceptor (Q) of photosystem II. This reduction of Q reaches a maximum of 50% in chloroplasts maintained under weak illumination and requires added ferredoxin and Mg2+. The reaction is inhibited by (I) an antibody to ferredoxin-NADP+ reductases (EC 1.6.7.1), (ii) treatment of chloroplasts with N-ethylmaleimide in the presence of NADPH, (iii) disulfodisalicylidenepropanediamine, (iv) antimycin, and (v) acceptors of non-cyclic electron transport. Uncouplers of phosphorylation do not affect NADPH-driven reduction of Q. It is proposed that electron flow from NADPH to Q may occur in the dark by a pathway utilising portions of the normal cyclic and non-cyclic electron carrier sequences. The possible in vivo role for such a pathway in redox poising of cyclic electron transport and hence in controlling the ATP/NADPH supply ratio is discussed.  相似文献   

8.
A light-induced reduction of the water-soluble nitroxide radical by chlorophyll in lipid and protein--lipid micelles was demonstrated. In contrast to model systems, in whole chloroplasts the NR is photoreduced by the electrons of the noncyclic electron transport chain. The initiation of cyclic electron transport in light particles, containing only photosystem I, does not lead to photoreduction of NR. When exogenous protein -- human serum albumin -- is added to the light particles, the nitroxide radicals are intensively reduced. The specific role of protein in electron transport from P700 to the exogenous acceptor is discussed.  相似文献   

9.
Chloroplasts in bundle sheath cells (BSC) of maize perform photosystem I (PSI)-mediated production of ATP. In this study, the participation of ascorbate (Asc) as an electron donor to PSI in light-induced electron transport in isolated maize BSC was demonstrated. It was found that Asc, at physiological concentrations, rapidly reduced photooxidized reaction center chlorophyll of PSI (P700). The rate of Asc donation of electrons to P700+ reached rates of 50-100 microequivalents (mg Chl)(-1) h(-1) at 70-80 mM ascorbate with methyl viologen as an electron acceptor. Electron transport supported by Asc was coupled with membrane energization, as demonstrated by the light-induced formation of a trans-thylakoid electric field measured by the electrochromic shift of carotenoids. The possible physiological function of Asc-dependent electron transport in bundle sheath chloroplasts of maize, as an electron donor for linear electron flow versus sustaining cyclic electron transport, is discussed.  相似文献   

10.
11.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

12.
The kinetics of photoinduced EPR I signals at different concentrations of ferredoxin was studied on isolated pea chloroplasts. A kinetic model of ferredoxin-dependent electron transport around photosystem I was suggested. A multiparticle model was constructed, which makes it possible to "directly" model the processes of electron transfer in multiprotein complexes and limited diffusion in different compartments of the system (stroma, lumen, and intermembrane space). A comparison of the kinetic and "direct" models revealed an important role of spatial organization of the system in the kinetics of redox turnover of P700.  相似文献   

13.
An investigation of the photoreduction of soluble ferredoxin and membrane-bound Fe-S centers of chloroplasts yielded results that are incompatible with some basic postulates of the now prevalent concept of photosynthetic electron transport (the “Z scheme”). In the Z scheme, plastquinone serves as an essential link in a linear electron transport chain from water via photosystem II to photosystem I and thence to the bound Fe-S centers, soluble ferredoxin and NADP+. In this formulation the oxygenic photoreduction of ferredoxin and of the Fe-S centers should have the same sensitivity to the plastoquinone inhibitors, dibromothymoquinone (DBMIB) and dinitrophenol ether of iodonitrothymol (DNP-INT). We found that the photoreduction of ferredoxin and the Fe-S centers exhibited differential sensitivity to these inhibitors. Ferredoxin was fully photoreduced by water at inhibitor concentrations that abolished the photoreduction of the Fe-S centers. These findings suggest that the oxygenic photoreduction of ferredoxin does not involve the participation of the Fe-S centers or other components of photosystem I. Only when an artificial, direct donor to photosystem I is used is the reduction of ferredoxin invariably preceded by the reduction of the Fe-S centers.  相似文献   

14.
Critchley C 《Plant physiology》1981,67(6):1161-1165
Cucumber plants (Cucumis sativus L.), grown at low quantum flux density (120-150 microeinsteins per square meter per second) were photoinhibited by a three-hour exposure in air to ten times the light intensity experienced during growth. Chloroplasts were isolated from photoinhibited and control leaves and the following activities determined: O2 evolution in the presence of ferricyanide, photosystem I activity, noncyclic and cyclic photophosphorylation, and light-induced proton uptake. Chlorophyll and chloroplast absorbance spectra, and chloroplast fluorescence were also measured. It was found that photosystem II electron transport and non-cyclic photophosphorylation were inhibited by about 50%, while cyclic photophosphorylation was less inhibited and photosystem I electron transport and light-induced proton uptake were unaffected. Electron transport to methylviologen could not be fully restored by electron donation to photosystem II. Chloroplast fluorescence induction at room temperature was strongly reduced following photoinhibition. There was no difference in the absorption spectra of the extracted chlorophylls from control and photoinhibited chloroplasts, but an increase of the absorption in the blue wavelength region was observed in the photoinhibited chloroplasts. It is suggested that high light stress does not result in alteration of the membrane properties, as is the case in low-temperature stress for example, but affects directly the photosynthetic reaction centers, primarily of photosystem II.  相似文献   

15.
Yocum CF 《Plant physiology》1977,60(4):597-601
A number of uncouplers and energy transfer inhibitors suppress photosystem II cyclic photophosphorylation catalyzed by either a proton/electron or electron donor. Valinomycin and 2,4-dinitrophenol also inhibit photosystem II cyclic photophosphorylation, but these compounds appear to act as electron transport inhibitors rather than as uncouplers. Only when valinomycin, KCl, and 2,4-dinitrophenol were added simultaneously to phosphorylation reaction mixtures was substantial uncoupling observed. Photosystem II noncyclic and cyclic electron transport reactions generate positive absorbance changes at 518 nm. Uncoupling and energy transfer inhibition diminished the magnitude of these absorbance changes. Photosystem II cyclic electron transport catalyzed by either p-phenylenediamine or N,N,N′,N′-tetramethyl-p-phenylenediamine stimulated proton uptake in KCN-Hg-NH2OH-inhibited spinach (Spinacia oleracea L.) chloroplasts. Illumination with 640 nm light produced an extent of proton uptake approximately 3-fold greater than did 700 nm illumination, indicating that photosystem II-catalyzed electron transport was responsible for proton uptake. Electron transport inhibitors, uncouplers, and energy transfer inhibitors produced inhibitions of photosystem II-dependent proton uptake consistent with the effects of these compounds on ATP synthesis by the photosystem II cycle. These results are interpreted as indicating that endogenous proton-translocating components of the thylakoid membrane participate in coupling of ATP synthesis to photosystem II cyclic electron transport.  相似文献   

16.
The functioning of the acceptor part of photosystem I was studied by temperature dependence of time course of light induced absorbtion changes at 700 nm of digitonin chloroplast fragments, enriched by photosystem I. Partial irreversibility of P700 photooxidation at low temperatures and appearance of two components (rapid and slow) in the time course of P700+ dark reduction reflect the contribution of different acceptors in electron transport. Thermoinactivation of fragments incubation at acid pH or treatment by glutaraldehyde cause complete inhibition of irreversible P700 photooxidation and slow dark reduction of P700+ at -170 degrees. The slow component of P700+ reduction and irreversible photooxidation of P700 are ascribed to contribution of secondary ferredoxin acceptors. The accurence of rapid component of P700+ dark reduction in light induced signal of treated fragments indicate that this component is due to recombination of reduced primary acceptor and P700+. Because only one electron transport takes at -170 degrees, the occurence of rapid and slow components in dark decay kinetics of P700+ suggests, that secondary acceptors of some reaction centers are incapable to reduction at -170 degrees. The shape of temperature dependence curve of the slow P700+ reduction component is interpreted as an indication of the tunneling electron transport.  相似文献   

17.
Bouny JM  Saglio PH 《Plant physiology》1996,111(1):187-194
In vitro cyclic electron transport around PSI was studied in thylakoids isolated from barley (Hordeum vulgare L.). Redox poising was obtained by using anaerobic conditions, preillumination, and the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Postillumination rates of P700+ re-reduction of 1 to 5 electrons s-1 were observed, depending on the conditions. The thylakoids supported two parallel paths of cyclic electron transport that were distinguishable by differences in antimycin sensitivity, saturation characteristics, and substrate specificity. The pathway most sensitive to antimycin was not saturated at ferredoxin concentrations up to 50 [mu]M, whereas the more insensitive pathway was saturated at 5 [mu]M ferredoxin. At the lower concentration of reduced ferredoxin, the antimycin-sensitive rate of P700+ re-reduction was lower than the antimycin-insensitive rate. The lower range of reduced ferredoxin concentrations are closer to in vivo conditions. Flavodoxin is shown to mediate cyclic electron transport. Flavodoxin was less efficient in mediating the antimycin-sensitive pathway but mediated the antimycin-insensitive pathway as efficiently as ferredoxin. Antibodies raised against ferredoxin:NADP+ oxidoreductase had no effect on either pathway for re-reduction of P700+. However, the ferredoxin: NADP+ oxidoreductase inhibitor 2[prime]-monophosphoadenosine-5[prime]-diphosphoribose was able to inhibit the antimycin-sensitive as well as the antimycin-insensitive pathway.  相似文献   

18.
19.
Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP+ reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.Abbreviations AQS 9,10-anthraquinone-2-sulphonate - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - dimaleimide N,N-p-phenylenedimaleimide - EDC N-(dimethylaminopropyl)-N-ethylcarbodiimide - Fd ferredoxin - FNR Fd-NADP+ oxidoreductase - FQR Fd-PQ reductase - GME glycine methyl ester - J820 tetrabromo-4-hydroxypyridine - PC plastocyanin - PMS N-methylphenazinium methyl sulphate - PS Photosystems I and II - PQ plastoquinone - Q quinone - Qr and Qo sites of quinone reduction and oxidation, respectively - sulpho-DSPD disulphodisalicylidenepropane-1,2-diamine  相似文献   

20.
Photosystem I activity of chloroplasts isolated from 21 days old maize seedlings ( Zea mays L. cv. Hidosil) cultivated in a nutrient solution containing different concentrations of Cd (10,20,30μM) was investigated. Cd markedly decreased ferredoxin(Fd)-dependent NADP+ photoreduction, while it had no effect on electron transport from 2. 6-dichlorophenolindophenol to methyl viologen, indicating that the metal interferred with electron transport on the reducing side of photosystem I. The decrease in electron transport correlated with a low Fd content, which in turn was correlated with a low Fe concentration, suggesting Cd-induced Fe deficiency. In in vitro experiments direct Cd inhibition of Fd-dependent NADP+ photoreduction required much higher Cd concentrations than those observed in Cd-treated plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号