首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects of indole-3-acetic acid and auxin herbicides on endogenous jasmonic acid (JA) concentrations were studied in relation to changes in ethylene and abscisic acid (ABA) levels in cleavers (Galium aparine). When plants were root-treated with increasing concentrations of indole-3-acetic acid (IAA), ethylene biosynthesis was stimulated in response to the accumulation of endogenous IAA in the shoot tissue. Within 25h of treatment, stimulated ethylene formation was accompanied by increases in immunoreactive concentrations of JA and ABA, which reached maxima of 4.5-fold and 26-fold of the control, respectively, at 100 microM of applied IAA. Corresponding effects were obtained using synthetic auxins and when the ethylene-releasing compound ethephon was applied exogenously. This represents the first report, to our knowledge, of an auxin-mediated increase in JA levels. The increase in JA may be triggered by ethylene.  相似文献   

3.
Mediation of Herbicide Effects by Hormone Interactions   总被引:1,自引:0,他引:1  
Chemical manipulation of the phytohormone system involves the use of herbicides for weed control in modern crop production. In the latter case, only compounds interacting with the auxin system have gained practical importance. Auxin herbicides mimic the overdose effects of indole-3-acetic acid (IAA), the principal natural auxin in higher plants. With their ability to control, particularly, dicotyledonous weeds in cereal crops, the synthetic auxins have been among the most successful herbicides used in agriculture. A newly discovered sequential hormone interaction plays a decisive role in their mode of action. The induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in ethylene biosynthesis is the primary target process, following auxin herbicide signalling. Although the exact molecular target site has yet to be identified, it appears likely to be at the level of auxin receptor(s) for perception or signalling, leading ultimately to species- and organ-specific de novo enzyme synthesis. In sensitive dicots, ethylene causes epinastic growth and tissue swelling. Ethylene also triggers the biosynthesis of abscisic acid (ABA), mainly through the stimulated cleavage of xanthophylls to xanthoxal, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). ABA mediates stomatal closure which limits photosynthetic activity and biomass production, accompanied by an overproduction of reactive oxygen species. Growth inhibition, senescence and tissue decay are the consequences. Recent results suggest that ethylene-triggered ABA is not restricted to the action of auxin herbicides. It may function as a module in the signalling of a variety of stimuli leading to plant growth regulation. An additional phenomenon is caused by the auxin herbicide quinclorac which also controls grass weeds. Here, quinclorac induces the accumulation of phytotoxic levels of cyanide, a co-product of ethylene, which ultimately derives from herbicide-induced ACC synthase activity in the tissue. Phytotropins are a further group of hormone-related compounds which are used as herbicides. They inhibit polar auxin transport by interacting with a regulatory protein, the NPA-binding protein, of the auxin efflux carrier. This causes an abnormal accumulation of IAA and applied synthetic auxins in plant meristems. Growth inhibition, loss of tropic responses and, in combination with auxin herbicides, synergistic effects are the consequences.  相似文献   

4.
Ethylene‐triggered abscisic acid: A principle in plant growth regulation?   总被引:9,自引:0,他引:9  
The application of auxins to sensitive plant species or their overproduction in transgenic plants stimulates ethylene biosynthesis via induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase. Recent studies with auxin herbicides and indole-3-acetic acid (IAA) have revealed that auxin-stimulated ethylene triggers an increase in the biosynthesis of abscisic acid (ABA), which then functions as a second messenger, leading to growth inhibition and senescence. This raises the question of whether ethylene-triggered ABA is restricted to the action of auxin herbicides or whether it is a widespread phenomenon in the normal plant growth regulation. Our own results and a reappraisal of the literature indicate that ethylene-induced ABA may, indeed, play a role in natural physiological phenomena, such as root gravireaction and suppression of lateral bud growth in apical dominance. In addition, it would be worthwhile to investigate whether ethylene-triggered ABA is involved in other processes which coincide with a strong stimulation of ethylene biosynthesis, such as growth inhibition induced by cytokinins and senescence elicited under stress conditions.  相似文献   

5.
The phytotoxic effects of auxin herbicides, including the quinoline carboxylic acids quinmerac and quinclorac, the benzoic acid dicamba and the pyridine carboxylic acid picloram, were studied in relation to changes in phytohormonal ethylene and abscisic acid (ABA) levels and the production of H(2)O(2) in cleavers (Galium aparine). When plants were root-treated with 10 microM quinmerac, ethylene synthesis was stimulated in the shoot tissue, accompanied by increases in immunoreactive levels of ABA and its precursor xanthoxal. It has been demonstrated that auxin herbicide-stimulated ethylene triggers ABA biosynthesis. The time-course and dose-response of ABA accumulation closely correlated with reductions in stomatal aperture and CO(2) assimilation and increased levels of hydrogen peroxide (H(2)O(2)), deoxyribonuclease (DNase) activity and chlorophyll loss. The latter parameters were used as sensitive indicators for the progression of tissue damage. On a shoot dry weight basis, DNase activity and H(2)O(2) levels increased up to 3-fold, relative to the control. Corresponding effects were obtained using auxin herbicides from the other chemical classes or when ABA was applied exogenously. It is hypothesized, that auxin herbicides stimulate H(2)O(2) generation which contributes to the induction of cell death in Galium leaves. This overproduction of H(2)O(2) could be triggered by the decline of photosynthetic activity, due to ABA-mediated stomatal closure.  相似文献   

6.
Light inhibits root elongation, increases ethylene production and enhances the inhibitory action of auxins on root elongation of pea ( Pisum sativum L. cv. Weibulls Marma) seedlings. To investigate the role of ethylene in the interaction between light and auxin, the level of ethylene production in darkness was increased to the level produced in light by supplying 1-aminocyclopropane-1-carboxylic acid (ACC) or benzylaminopurine (BAP). Ethylene production was measured in excised root tips after treatment of intact seedlings for 24 h, while root growth was measured after 48 h. Auxin, at a concentration causing a partial inhibition of root elongation, did not increase ethylene production significantly. A 4-fold increase in ethylene production, caused either by light, 0.1 μ M ACC or 0.1 μ M BAP, inhibited root elongation by 40–50%. The auxins 2,4-dichlorophenoxyacetic acid and indolebutyric acid applied at 0.1 μ M inhibited root elongation by 15–25% in darkness but by 50–60% in light. Supply of ACC or BAP in darkness enhanced the inhibitory effects of auxins to about the same extent as in light. The inhibition caused by the auxins as well as by the BAP was associated with swelling of the root tips. ACC and BAP treatment synergistically increased the swelling caused by auxins. We conclude that auxin and ethylene, when applied or produced in partially inhibitory concentrations, act synergistically to inhibit root elongation and increase root diameter. The effect of light on the response of the roots to auxins is mediated by a light-induced increase in ethylene production.  相似文献   

7.
Calli were induced from leaf explants of seedling in Citrus grandis (L.) Osbeck (pummelo) on MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (NAA), 2,4,5-trichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic, 4-chlorophenoxyacetic acid, 4-methoxy-3,6-dichlorobenzoic acid or 4-amino-3,5,6-trichloropicolinic acid. 2,4-D was most effective. Only green, compact calli induced by 2,4-D at low concentrations (0.9 and 4.5 M) were capable of shoot formation and regenerated more than 13 shoots per callus on MS medium containing at least 6.66 M benzyladenine (BA). Calli induced by other auxins did not regenerate shoots on MS medium containing BA at all concentrations studied. A multiplication rate of 5–7 shoots was achieved from shoot tip culture on MS medium with 0.89 M BA. Roots developed when regenerated shoots were cultured on MS medium with 9.84 M indole-3-butyric acid and 5.37 M NAA. No response was obtained on mature leaves cultured on MS medium supplemented with the above mentioned auxins at various concentrations.  相似文献   

8.
Cytokinins and auxins are major phytohormones involved in various aspects of plant growth and development. These phytohormones are also known to antagonize the effects of abscisic acid (ABA) on stomatal movement, and to affect ethylene biosynthesis. As ethylene has an antagonistic effect on ABA-induced stomatal closure, the possibility that the antagonistic effects of these phytohormones on ABA were mediated through ethylene biosynthesis was investigated. Both the cytokinin, 6-benzyladenine (BA), and the auxin, 1-naphthaleneacetic acid (NAA), antagonized ABA-induced stomatal closure in a manner similar to that following application of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). However, these effects were negated when ethylene signalling, perception, or biosynthesis were blocked. As stomatal aperture is regulated by changes in guard cell volume, ABA application was found to reduce the volume of the guard cell protoplasts (GCP). It was found that BA, NAA, or ACC application compensated perfectly for the reduction in GCP volume by ABA application in WT plants. The above observations suggest that cytokinins and auxins inhibit ABA-induced stomatal closure through the modulation of ethylene biosynthesis, and that ethylene inhibits the ABA-induced reduction of osmotic pressure in the guard cells.  相似文献   

9.
Auxin-induced ethylene biosynthesis and its regulatory stepsin etiolated mung bean hypocotyl segments were examined. Theendogenous content of 1-aminocyclopropane- 1-carboxylic acid(ACC), an immediate precursor of ethylene, increased correspondingto the rate of ethylene production. Benzyladenine (BA), whichis a synergistic stimulator of auxin-induced ethylene production,increased the ACC content parallel to the rate of ethylene productionin the presence of IAA, but failed to increase the ACC contentin the absence of IAA while ethylene production was significantlystimulated by BA. Abscisic acid (ABA) inhibited the formationof ACC. The ACC synthase activity in the tissue was increasedby IAA, and the increase was further promoted by the presenceof BA. Cycloheximide severely inhibited the development of auxin-inducedACC synthase. The enzymatic properties of mung bean ACC synthasewere similar to those of the tomato fruit enzyme. Aminoethoxyvinylglycine(AVG) and aminooxyacetic acid, which inhibit the ACC synthasereaction, stimulated the development of ACC synthase. The regulatorymechanisms of the growth regulators are discussed in relationto ACC formation. (Received December 3, 1980; Accepted January 22, 1981)  相似文献   

10.
Pueraria lobata hairy roots have faster elongationand more branches than normal roots. The responses of hairy roots and normalroots to treatment with three auxins, indole-3-acetic acid (IAA),indole-3-butyric acid (IBA), and naphthalene acetic acid (NAA) were different.In normal roots, all three auxins strongly stimulated lateral root formation atall tested concentrations. Responses to IAA and IBA in primary root growth andlateral root elongation were similar and depended on concentration; promotionat0.1 M, no effect at 1.0 M, and inhibition at2.5 M. In hairy roots, lateral root formation varied inresponseto the different auxins, i.e. depressed by NAA, unaffected by IAA, and promotedby IBA. Primary root growth was slightly inhibited by IBA and was unaffected byIAA. However, mean lateral root length was reduced in response to IAA and IBA.Only NAA exerted strong inhibition on primary and lateral root elongation inboth root types. The similar free IAA and conjugated IAA content but quitedifferent basal ethylene production and biosynthesis in hairy and normal rootssuggested different mechanisms of response to exogenous auxins in the two roottypes.  相似文献   

11.
The chemical 2,4-dichlorophenoxyacetic acid (2,4-D) regulates plant growth and development and mimics auxins in exhibiting a biphasic mode of action. Although gene regulation in response to the natural auxin indole acetic acid (IAA) has been examined, the molecular mode of action of 2,4-D is poorly understood. Data from biochemical studies, (Grossmann (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508) proposed that at high concentrations, auxins and auxinic herbicides induced the plant hormones ethylene and abscisic acid (ABA), leading to inhibited plant growth and senescence. Further, in a recent gene expression study (Raghavan et al. (2005) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5:4–17), we have confirmed that at high concentrations, 2,4-D induced the expression of the gene NCED1, which encodes 9-cis-epoxycarotenoid dioxygenase, a key regulatory enzyme of ABA biosynthesis. To understand the concentration-dependent mode of action of 2,4-D, we further examined the regulation of whole genome of Arabidopsis in response to a range of 2,4-D concentrations from 0.001 to 1.0 mM, using the ATH1-121501 Arabidopsis whole genome microarray developed by Affymetrix. Results of this study indicated that 2,4-D induced the expression of auxin-response genes (IAA1, IAA13, IAA19) at both auxinic and herbicidal levels of application, whereas the TIR1 and ASK1 genes, which are associated with ubiquitin-mediated auxin signalling, were down-regulated in response to low concentrations of 2,4-D application. It was also observed that in response to low concentrations of 2,4-D, ethylene biosynthesis was induced, as suggested by the up-regulation of genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Although genes involved in ethylene biosynthesis were not regulated in response to 0.1 and 1.0 mM 2,4-D, ethylene signalling was induced as indicated by the down-regulation of CTR1 and ERS, both of which play a key role in the ethylene signalling pathway. In response to 1.0 mM 2,4-D, both ABA biosynthesis and signalling were induced, in contrast to the response to lower concentrations of 2,4-D where ABA biosynthesis was suppressed. We present a comprehensive model indicating a molecular mode of action for 2,4-D in Arabidopsis and the effects of this growth regulator on the auxin, ethylene and abscisic acid pathways. Experiment station: Plant Biotechnology Centre, Primary Industries Research Victoria, Department of Primary Industries, La Trobe University, Bundoora, Victoria 3086, and the Victorian Microarray Technology Consortium (VMTC).  相似文献   

12.
The inhibitory effects of indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) on elongation growth of pea (Pisum sativum L.) seedling roots were investigated in relation to the effects of these compounds on ethylene production by the root tips. When added to the growth solution both compounds caused a progressively increasing inhibition of growth within the concentration range of 0.01 to 1 micromolar. However, only ACC increased ethylene production in root tips excised from the treated seedlings after 24 hours. High auxin concentrations caused a transitory increase of ethylene production during a few hours in the beginning of the treatment period, but even in 1 micromolar IAA this increase was too low to have any appreciable effect on growth. ACC, but not IAA, caused growth curvatures, typical of ethylene treatment, in the root tips. IAA caused conspicuous swelling of the root tips while ACC did not. Cobalt and silver ions reversed the growth inhibitory effects induced by ACC but did not counteract the inhibition of elongation or swelling caused by IAA. The growth effects caused by the ACC treatments were obviously due to ethylene production. We found no evidence to indicate that the growth inhibition or swelling caused by IAA is mediated by ethylene. It is concluded that the inhibitory action of IAA on root growth is caused by this auxin per se.  相似文献   

13.
Auxin-deprived, mannitol-supplemented, suspension-cultured pear (Pyrus communis L. Passe Crassane) fruit cells produce large quantities (20-40 nanoliters ethylene per 106 cells per hour) of ethylene in response to auxins, CuCl2 or 1-amino-cyclopropane-1-carboxylic acid (ACC). Maximum rates of production are achieved about 12 hours after the addition of optimal amounts of indoleacetic acid (IAA), naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), 4 to 5 hours after the addition of CuCl2 and 1 to 2 hours after the addition of ACC. Supraoptimal concentrations of IAA result in a lag phase followed by a normal response. High concentrations of NAA and 2,4-D result in an early (4-5 hours) stress response and injury.

Continuous protein and RNA synthesis are essential for elaboration of the full IAA response; only protein synthesis is necessary for the response to CuCl2 and ACC. Based on polysomal states and rates of amino acid incorporation, CuCl2 partially inhibits protein synthesis while nonetheless stimulating ethylene production. In general, ethylene production by the pear cells resembles that of other plant systems. Some differences may reflect the sensitivity of the cells and are discussed. The relatively high levels of ethylene produced and the experimental convenience of the cultured cells should make them especially suitable for further investigations of ethylene production and physiology.

  相似文献   

14.
Hormonal metabolism associated with fruit development in muskmelon was investigated by measuring IAA, ABA, and ACC levels in several tissues at various stages of development. In addition, levels of conjugated IAA and ABA were determined in the same tissues. Ethylene production, which is believed to signal the ripening and senescence of mature fruit, was also measured. Ethylene production was highest in the outer tissue near the rind and gradually declined during maturation, except for a dramatic increase in all fruit tissues at the climacteric. In contrast to ethylene production, ACC levels increased during maturation and remained equal throughout the fruit until the climacteric, when levels in the outer tissues increased nearly 5-fold over levels in the inner tissues. The consistent presence of ACC indicates that ACC oxidase rather than the availability of ACC regulates ethylene production in developing fruits. ABA and ABA esters generally declined during maturation, however an increase in ABA esters associated with the outer mesocarp tissue was observed in fully mature, climacteric fruit. IAA and IAA conjugates were only found in the outer tissue near the rind, and their levels remained low until the fruit was fully mature and entering the climacteric. At that time, increased levels of conjugates were detected. The late burst of hormonal metabolism in the outer mesocarp tissue appeared to signal its degeneration and the deterioration that typically occurs in ripening fruit. The tissue-specific conjugation of IAA and ABA, in addition to the production of climacteric ethylene, may represent part of the signaling mechanism initiating ripening and eventual deterioration of tissues in muskmelon fruits.Abbreviations ABA abscisic acid - ACC 1-aminocylopropane-1-carboxylic acid - DAP days after pollination - IAA indole-3-acetic acid  相似文献   

15.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

16.
Previous studies have reported that a purified sedimentary humic acid (PHA) was able to increase the concentration of nitric oxide (NO), indole-acetic acid (IAA) and ethylene in cucumber roots. Here, we investigated if these effects are functionally related to the ability of PHA to improve shoot growth. The effect of specific inhibitors of NO, IAA and ethylene functionality and signaling on PHA-induced shoot growth was studied. Likewise, the effect of these inhibitors on the synthesis and activity of the phytoregulators concerned by PHA action in cucumber roots was also explored. The results show that shoot growth promoted by PHA is due to an increase of IAA concentration in the root through both a NO-dependent and a NO-independent pathway. In addition, the increased ethylene production in the root is regulated by an IAA-dependent pathway. Finally, results also showed that the increase of ABA concentration in the root is regulated through both IAA- and ethylene-dependent pathways. In summary, the shoot growth promoting action of PHA involves a complex hormonal network. On one hand, the PHA action is functionally linked to increments in NO and IAA concentration in roots. And on the other hand, PHA action also increases ethylene and ABA root concentration mediated by NO-IAA dependent pathways.  相似文献   

17.
Arbuscular mycorrhizal fungi (AMF) and Trichoderma harzianum are known to affect plant growth and disease resistance through interaction with phytohormone synthesis or transport in the plant. Cross-talk between these microorganisms and their host plants normally occurs in nature and may affect plant resistance. Simultaneous quantification in the shoots of melon plants revealed significant changes in the levels of several hormones in response to inoculation with T. harzianum and two different AMF (Glomus intraradices and Glomus mosseae). Analysis of zeatin (Ze), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) in the shoot showed common and divergent responses of melon plants to G. intraradices and G. mosseae. T. harzianum effected systemic increases in Ze, IAA, ACC, SA, JA and ABA. The interaction of T. harzianum and the AMF with the plant produced a characteristic hormonal profile, which differed from that produced by inoculation with each microorganism singly, suggesting an attenuation of the plant response, related to the hormones SA, JA and ethylene. These results are discussed in relation to their involvement in biomass allocation and basal resistance against Fusarium wilt.  相似文献   

18.
The effects of fusicoccin (FC) on growth and ethylene synthesis of tomato (Lycopersicon esculentum Mill.) hypocotyls were compared to those of indole-3-acetic acid (IAA). Fusicoccin promoted both growth and ethylene production maximally at <2M. Growth was stimulated to a slightly greater extent by FC as compared to IAA, while ethylene synthesis rates in response to FC were about 50% less than those induced by IAA. Cycloheximide (0.5 M) inhibited auxin-induced growth by 80% but had no effect on FC-induced growth; ethylene production was inhibited to the same extent (58%) when induced by either IAA or FC. Both IAA and FC caused tissue contents of 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-ACC to increase, indicating that like IAA, FC induces ethylene synthesis by stimulating the formation of ACC. Orthovanadate, a potent inhibitor of proton-translocating plasma membrane ATPases, reduced both IAA- and FC-induced growth and ethylene synthesis at concentrations less than 1 mM, with ethylene synthesis being approximately 10 times more sensitive to inhibition than growth. Vanadate did not affect tissue ACC levels, slightly reduced total ACC production, and inhibited conversion of ACC to ethylene. However, significant inhibition of in vivo ethylene-forming enzyme activity required high concentrations of vanadate (1 mM) and was less effective than inhibition by cobaltous ion. The site of action of vanadate in inhibiting ethylene synthesis remains unclear, but the ion did not prevent the elevation of tissue ACC levels in response to IAA or FC. It is unlikely, therefore, that stimulation of plasma membrane H+-ATPase activity is required for the induction of ACC synthase by IAA and FC.  相似文献   

19.
Summary Immature embryos of 41 lines of barley were screened in vitro for callus induction and somatic embryogenesis on different media to establish totipotent cultures. The use of modified MS and CC media, both supplemented with 1 g/l casein hydrolysate, and the substitution of agarose for agar resulted in the highest frequencies of somatic embryo induction. Embryogenic callus was induced and plants regenerated from 23 of the lines tested. The auxins 2,4-D, dicamba, picloram and 2,4,5-T were suitable for embryogenic callus induction. High frequencies of somatic embryo germination occurred on CC medium supplemented with 1 mg/l IAA and 0.05 mg/l zeatin. A strong genotypic effect on the capacity and frequency of embryogenic callus formation was found. Cultivar Golden Promise always gave the best results. Experiments with field grown material in 3 consecutive years showed that environmental factors also strongly influenced the induction of somatic embryogenesis and plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid - picloram 4-amino-3,6,6-trichloropicolinic acid - NAA naphtaleneacetic acid - IAA indole-3-acetic acid - ABA abscisic acid - BAP 6-benzyl amino purine - 2iP 6-(3-methyl-2 butenyl 1-amino)purine - GA3 gibberellic acid  相似文献   

20.
This study was conducted to investigate the in vitro influence of ethylene on shoot branching and leaf yellowing in the rose cultivar Tineke by using different compounds that regulate ethylene inhibition and stimulation. Aminoethoxy vinyl glycine (AVG), silver thiosulfate (STS), and sodium nitroprusside (SNP) caused enhanced apical shoot initiation and reduced leaf yellowing, via inhibition of ethylene production, in the following order: AVG > SNP > STS. In contrast, the addition of 1-aminocyclopropane-1-carboxylic acid (ACC) or 3-indoleacetic acid (IAA) stimulated ethylene production and had greater negative effects on the studied parameters than the control; the negative effects of IAA were further confirmed in combination with AVG, STS, or SNP. The effects of ethylene on apical shoot initiation and leaf yellowing in Tineke were confirmed in another rose cultivar, Innocence. Hence, this study provides strong support for the hypothesis that ethylene-inhibiting agents have beneficial effects on apical shoot initiation and reduction of leaf yellowing in other rose cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号