首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
3.
4.
MADS-box genes are crucial regulators of floral development, yet how their functions have evolved to control different aspects of floral patterning is unclear. To understand the extent to which MADS-box gene functions are conserved or have diversified in different angiosperm lineages, we have exploited the capability for functional analyses in a new model system, Papaver somniferum (opium poppy). P. somniferum is a member of the order Ranunculales, and so represents a clade that is evolutionarily distant from those containing traditional model systems such as Arabidopsis, Petunia, maize or rice. We have identified and characterized the roles of several candidate MADS-box genes in petal specification in poppy. In Arabidopsis, the APETALA3 (AP3) MADS-box gene is required for both petal and stamen identity specification. By contrast, we show that the AP3 lineage has undergone gene duplication and subfunctionalization in poppy, with one gene copy required for petal development and the other responsible for stamen development. These differences in gene function are due to differences both in expression patterns and co-factor interactions. Furthermore, the genetic hierarchy controlling petal development in poppy has diverged as compared with that of Arabidopsis. As these are the first functional analyses of AP3 genes in this evolutionarily divergent clade, our results provide new information on the similarities and differences in petal developmental programs across angiosperms. Based on these observations, we discuss a model for how the petal developmental program has evolved.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Interaction study of MADS-domain proteins in tomato   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
The ABC model of floral organ identity is based on studies of Arabidopsis and Antirrhinum, both of which are highly derived eudicots. Most of the genes required for the ABC functions in Arabidopsis and Antirrhinum are members of the MADS-box gene family, and their orthologs are present in all major angiosperm lineages. Although the eudicots comprise 75% of all angiosperms, most of the diversity in arrangement and number of floral parts is actually found among basal angiosperm lineages, for which little is known about the genes that control floral development. To investigate the conservation and divergence of expression patterns of floral MADS-box genes in basal angiosperms relative to eudicot model systems, we isolated several floral MADS-box genes and examined their expression patterns in representative species, including Amborella (Amborellaceae), Nuphar (Nymphaeaceae) and Illicium (Austrobaileyales), the successive sister groups to all other extant angiosperms, plus Magnolia and Asimina, members of the large magnoliid clade. Our results from multiple methods (relative-quantitative RT-PCR, real-time PCR and RNA in situ hybridization) revealed that expression patterns of floral MADS-box genes in basal angiosperms are broader than those of their counterparts in eudicots and monocots. In particular, (i) AP1 homologs are generally expressed in all floral organs and leaves, (ii) AP3/PI homologs are generally expressed in all floral organs and (iii) AG homologs are expressed in stamens and carpels of most basal angiosperms, in agreement with the expectations of the ABC model; however, an AG homolog is also expressed in the tepals of Illicium. The broader range of strong expression of AP3/PI homologs is inferred to be the ancestral pattern for all angiosperms and is also consistent with the gradual morphological intergradations often observed between adjacent floral organs in basal angiosperms.  相似文献   

15.
Piwarzyk E  Yang Y  Jack T 《Plant physiology》2007,145(4):1495-1505
The B-class genes APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis (Arabidopsis thaliana) and their orthologs in other species have been the focus of studies to elucidate the development of petals and stamens in angiosperm flowers. Evolutionary analysis indicates that B-class genes have undergone multiple gene duplication events in angiosperms. The resultant B-class lineages are characterized by short, conserved amino acid sequences at the extreme C-terminal end of the B-class proteins. AP3 is a member of the euAP3 lineage that contains both the euAP3 and PI-derived motifs at the C terminus. PI is a member of the PI lineage that contains the C-terminal PI motif at the C terminus. Despite conservation over a wide evolutionary distance, the function of C-terminal motifs is not well understood. In this study, we demonstrate that truncated forms of AP3 and PI, which lack the conserved C-terminal motifs, function to direct floral organ identity specification in Arabidopsis plants. By contrast, larger truncations, which remove the third putative amphipathic alpha-helix in the K domain of AP3 or PI, are nonfunctional. We conclude that the euAP3 and PI-derived motifs of AP3 and the PI motif of PI are not essential for floral organ identity function of AP3 and PI in Arabidopsis.  相似文献   

16.
17.
18.
19.
20.
The plant MADS-box regulatory gene family includes several loci that control different aspects of inflorescence and floral development. Orthologs to the Arabidopsis thaliana MADS-box floral meristem genes APETALA1 and CAULIFLOWER and the floral organ identity genes APETALA3 and PISTILLATA were isolated from the congeneric species Arabidopsis lyrata. Analysis of these loci between these two Arabidopsis species, as well as three other more distantly related taxa, reveal contrasting dynamics of molecular evolution between these paralogous floral regulatory genes. Among the four loci, the CAL locus evolves at a significantly faster rate, which may be associated with the evolution of genetic redundancy between CAL and AP1. Moreover, there are significant differences in the distribution of replacement and synonymous substitutions between the functional gene domains of different floral homeotic loci. These results indicate that divergence in developmental function among paralogous members of regulatory gene families is accompanied by changes in rate and pattern of sequence evolution among loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号