首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Role of the steroid receptor coactivator SRC-3 in cell growth   总被引:10,自引:0,他引:10       下载免费PDF全文
Steroid receptor coactivator 3 (SRC-3/p/CIP/AIB1/ACTR/RAC3/TRAM-1) is a member of the p160 family of nuclear receptor coactivators, which includes SRC-1 (NCoA-1) and SRC-2 (TIF2/GRIP1/NCoA2). Previous studies indicate that SRC-3 is required for normal animal growth and is often amplified or overexpressed in many cancers, including breast and prostate cancers. However, the mechanisms of SRC-3-mediated growth regulation remain unclear. In this study, we show that overexpression of SRC-3 stimulates cell growth to increase cell size in prostate cancer cell lines. Furthermore, our results indicate that overexpression of SRC-3 can modulate the AKT signaling pathway in a steroid-independent manner, which results in the activation of AKT/mTOR signaling concomitant with an increase in cell size. In contrast, down-regulation of SRC-3 expression in cells by small interfering RNA decreases cell growth, leading to a smaller cell size. Similarly, in SRC-3 null mutant mice, AKT signaling is down-regulated in normally SRC-3-expressing tissues. Taken together, these results suggest that SRC-3 is an important modulator for mammalian cell growth.  相似文献   

5.
6.
7.
Members of the steroid receptor coactivator (SRC) family, which include SRC-1 (NcoA-1/p160), SRC-2(TIF2/GRIP1/NcoA-2) and SRC-3(pCIP/RAC3/ACTR/pCIP/ AIB1/TRAM1), are critical mediators of steroid receptor action. Gene ablation studies previously identified SRC-1 and SRC-2 as being involved in the control of energy homeostasis. A more precise identification of the molecular pathways regulated by these coactivators is crucial for understanding the role of steroid receptor coactivators in the control of energy homeostasis and obesity. A genomic approach using microarray analysis was employed to identify the subsets of genes that are altered in the livers of SRC-1-/-, SRC-2-/-, and SRC-3-/- mice. Microarray analysis demonstrates that gene expression changes are specific and nonoverlapping for each SRC member in the liver. The overall pattern of altered gene expressions in the SRC-1-/- mice was up-regulation, whereas SRC-2-/- mice showed an overall down-regulation. Several key regulatory enzymes of energy metabolism were significantly altered in the liver of SRC-2-/- mice, which are consistent with the prior observation that SRC-2-/- mice have increased energy expenditure. This study demonstrates that the molecular targets of SRC-2 regulation in the murine liver stimulate fatty acid degradation and glycolytic pathway, whereas fatty acid, cholesterol, and steroid biosynthetic pathways are down-regulated.  相似文献   

8.
9.
10.
11.
In the past few years, many nuclear receptor coactivators have been identified and shown to be an integral part of receptor action. The most frequently studied of these coactivators are members of the steroid receptor coactivator (SRC) family, SRC-1, TIF2/GRIP1/SRC-2, and pCIP/ACTR/AIB-1/RAC-3/TRAM-1/SRC-3. In this report, we describe the biochemical purification of SRC-1 and SRC-3 protein complexes and the subsequent identification of their associated proteins by mass spectrometry. Surprisingly, we found association of SRC-3, but not SRC-1, with the I kappa B kinase (IKK). IKK is known to be responsible for the degradation of I kappa B and the subsequent activation of NF-kappa B. Since NF-kappa B plays a key role in host immunity and inflammatory responses, we therefore investigated the significance of the SRC-3-IKK complex. We demonstrated that SRC-3 was able to enhance NF-kappa B-mediated gene expression in concert with IKK. In addition, we showed that SRC-3 was phosphorylated by the IKK complex in vitro. Furthermore, elevated SRC-3 phosphorylation in vivo and translocation of SRC-3 from cytoplasm to nucleus in response to tumor necrosis factor alpha occurred in cells, suggesting control of subcellular localization of SRC-3 by phosphorylation. Finally, the hypothesis that SRC-3 is involved in NF-kappa B-mediated gene expression is further supported by the reduced expression of interferon regulatory factor 1, a well-known NF-kappa B target gene, in the spleens of SRC-3 null mutant mice. Taken together, our results not only reveal the IKK-mediated phosphorylation of SRC-3 to be a regulated event that plays an important role but also substantiate the role of SRC-3 in multiple signaling pathways.  相似文献   

12.
13.
14.
15.
16.
17.
Coactivators such as TIF2 and SRC-1 modulate the positioning of the dose-response curve for agonist-bound glucocorticoid receptors (GRs) and the partial agonist activity of antiglucocorticoid complexes. These properties of coactivators differ from their initially defined activities of binding to, and increasing the total levels of transactivation by, agonist-bound steroid receptors. We now report that constructs of TIF2 and SRC-1 lacking the two activation domains (AD1 and AD2) have significantly less ability to increase transactivation but retain most of the activity for modulating the dose-response curve and partial agonist activity. Mammalian two-hybrid experiments show that the minimum TIF2 segment with modulatory activity (TIF2.4) does not interact with p300, CREB-binding protein, or PCAF, which also modulates GR activities. DRIP150 and DRIP205 have been implicated in coactivator actions but are unable to modulate GR activities. The absence of synergism by PCAF or DRIP150 with SRC-1 or TIF2, respectively, further suggests that these other factors are not involved. The ability of a TIF2.4 fragment (i.e. TIF2.37), which is not known to interact with proteins, to block the actions of TIF2.4 suggests that an unidentified binder mediates the modulatory activity of TIF2. Pull-down experiments with GST/TIF2.4 demonstrate a direct interaction of TIF2 with GR in a hormone-dependent fashion that requires the receptor interaction domains of TIF2 and is equally robust with agonists and most antiglucocorticoids. These observations, which are confirmed in mammalian two-hybrid assays, suggest that the capacity of coactivators such as TIF2 to modulate the partial agonist activity of antisteroids is mediated by the binding of coactivators to GR-antagonist complexes. In conclusion, the modulatory activity of coactivators with GR-agonist and -antagonist complexes is mechanistically distinct from the ability of coactivators to augment the total levels of transactivation and appears to involve the binding to both GR-steroid complexes and an unidentified TIF2-associated factor(s).  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号