首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A (1 → 3)-β-glucan 3-glucanohydrolase (EC 3.2.1.39) has been purified approx. 190-fold from extracts of germinating barley. The enzyme has an apparent Mr 32 000, a pI of 8.6, and a pH optimum of 5.6. Analysis of hydrolysis products released from the (1 → 3)-β-glucan, laminarin, shows that the enzyme is an endohydrolase. Sequence analysis of the 46 NH2-terminal amino acids of the (1 → 3)-β-glucanase reveals 54% positional identity with barley (1 → 3,1 → 4)-β-glucanases (EC 3.2.1.73) and suggests a common evolutionary origin for these two classes of β-glucan endohydrolases. The barley (1 → 3)-β-glucanase also exhibits significant similarity with a (1 → 3)-β-glucanase from tobacco.  相似文献   

2.
A 2×3 factorial arrangement was used to investigate the interaction between lactose level (170 g/kg versus 275 g/kg), enzyme supplementation (with or without endo-1,3 (4)-β-glucanase) and toasting (raw barley versus toasted barley) in barley-based diets (250 g/kg) on piglet performance and diet digestibility postweaning. One hundred and forty-four weaned piglets (24 days old, 6.5 kg live weight) were blocked on the basis of live weight and were assigned to one of six dietary treatments (n = 6) for 21 days as follows: (1) 170 g lactose/kg and barley (250 g/kg), (2) 275 g lactose/kg and barley (250 g/kg), (3) 170 g lactose/kg and toasted-flaked barley (250 g/kg), (4) 275 g lactose/kg and toasted-flaked barley (250 g/kg), (5) 170 g lactose/kg and barley (250 g/kg) plus β-glucanase, (6) 275 g lactose/kg and barley (250 g/kg) plus β-glucanase. There was an interaction (P<0.05) between lactose level and β-glucanase supplementation on average daily gain (ADG), food conversion ratio (FCR) and coefficient of total tract apparent digestibilities (CTTAD) of dry matter (DMD), organic matter (OMD) and nitrogen (N). Pigs offered 170 g lactose/kg and β-glucanase supplementation had an improved FCR and ADG compared to the treatment based on 170 g lactose/kg and unsupplemented barley. However, β-glucanase supplementation at 275 g lactose/kg had no significant effect on FCR and ADG compared to the 275 g lactose/kg and unsupplemented barley. Pigs offered diets containing 170 g lactose/kg plus β-glucanase had a significantly higher CTTAD for DMD, OMD and nitrogen compared to the 275 g lactose/kg plus β-glucanase diet. However, there was no significant effect of lactose level in the unsupplemented diets. Pigs offered high lactose diets showed significantly increased total VFA concentration, molar proportions of butyric acid and reduced acetic acid compared to those offered low lactose diets. Pigs offered β-glucanase supplemented diets showed reduced (P<0.05) total VFA concentration compared to unsupplemented diets. In conclusion, β-glucanase supplementation improved diet digestibility and pig performance compared to the unsupplemented diet at the low lactose level only. There was no response of β-glucanase supplementation at the high level of lactose.  相似文献   

3.
Structure and biological activities of hypochlorite oxidized zymosan   总被引:5,自引:0,他引:5  
Zymosan (ZYM), a strong complement activating yeast cell preparation, is also a potent inflammatory substance, which shows immunopharmacological activity. Major component of ZYM is β-glucan but contains other constituents, such as mannan, protein, and nucleic acid. We applied sodium hypochlorite (NaClO) treatment to ZYM to reduce impurities and compared the activity with native/parent ZYM. Oxidized ZYM (OX-ZYM) became a nitrogen-free agent. By NMR analysis of native OX-ZYM and zymolyase (endo-1,3-β-glucanase) digest, OX-ZYM was found to contain 1,3-β-linked and 1,6-β-linked glucan moieties, while the latter degraded by sodium metaperiodate treatment. OX-ZYM also contained small amounts of anionic groups, partly reducible by sodium borohydride. Degree of polymerization (DP) of 1,6-β-glucan moiety was estimated to be about DP10–DP50 by MALDI-TOF-MS analysis. In comparison with ZYM activities, OX-ZYM and derivatives showed strong antitumor activity to solid form of Sarcoma 180 in mice, and showed strong activity on alternative pathway of complement, but lost secondary response to ZYM-immune mice. These facts strongly suggested that a particulate form of β-glucan was prepared by NaClO treatment of ZYM and at least a part of ZYM-mediated biological activity was found unmediated by β-glucan moiety.  相似文献   

4.
Cellulose degrading enzymes and their potential industrial applications   总被引:41,自引:0,他引:41  
Bioconversion of cellulose to soluble sugars and glucose is catalyzed by a group of enzymes called cellulases. Microorganisms including fungi, bacteria and actinomycetes produce mainly three types of cellulase components—endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and β-glucosidase—either separately or in the form of a complex. Over the last several decades, cellulases have become better understood at a fundamental level; nevertheless, much remains to be learnt. The tremendous commercial potential of cellulases in a variety of applications remains the driving force for research in this area. This review summarizes the present state of knowledge on microbial cellulases and their applications.  相似文献   

5.
The soluble β-glucan contents in the cell wall of yeasts were estimated by treating cells with Glucanex® 200G that contained mainly β1,3-glucanase and some β1,6-glucanase. The sensitivity of cell walls of 11 yeasts to various concentrations of β-glucanase was compared. The yeasts that are resistant to β-glucanase treatment are expected to contain higher β-glucan content and those that are sensitive to the β-glucanase treatment are expected to contain lower β-glucan content. Two yeast strains were selected for further study by comparing the sensitivity of cell wall to β-glucanase; Candida bombicola and Candida albicans. Candida bombicola was more resistant and C. albicans was more sensitive to the Glucanex® 200G treatment. The results of enzyme sensitivity tests were verified by quantification of soluble β-glucan content purified from the yeasts. Much larger amount of soluble β-glucan was obtained from the cell walls of C. bombicola (0.08 g g−1 dried cell) than C. albicans (0.025 g g−1 dried cell).  相似文献   

6.
Botryosphaeria rhodina and Trichoderma harzianum Rifai were grown on botryosphaeran (an exopolysaccharide (EPS) of the β-1,3;1,6-d-glucan type produced by B. rhodina) as sole carbon source with the objective of producing β-glucanases of the 1,3-type. Conditions for β-1,3-glucanase production by T. harzianum were examined by a statistical response surface method, and showed maximal enzyme production at 5 days growth in media containing 1.5 g/l of EPS. Good agreement was obtained between the experimental values of β-1,3-glucanase activity and the corresponding values predicted by the mathematical model. The crude β-1,3-glucanase preparations were active towards a number of different β-1,3-glucans and β-glucosides. The mycelium of B. rhodina also proved to be a good substrate for β-1,3-glucanase production by both fungal species.  相似文献   

7.
A novel xyloglucan-specific endo-β-1,4-glucanase (XEG), xyloglucanase, with a molecular mass of 80 kDa and a pI of 4.8, was isolated from the fungus Geotrichum sp. M128. It was found to be an endoglucanase active toward xyloglucan and not active toward carboxymethylcellulose, Avicel, or barley 1,3-1,4-β-glucan. Analysis of the precise substrate specificity using various xyloglucan oligosaccharide structures revealed that XEG has at least four subsites (−2 to +2) and specifically recognizes xylose branching at the +1 and +2 sites. The full-length cDNA encoding XEG was cloned and sequenced. It consists of a 2436-bp open reading frame encoding a 776-amino acid protein. From its deduced amino acid sequence, XEG can be classified as a family 74 glycosyl hydrolase. The cDNA encoding XEG was then expressed in Escherichia coli, and enzymatically active recombinant XEG was obtained.  相似文献   

8.
Several fungal strains ofAspergillus andPenicillium were immobilized by cryopolymerization in polyvinyl alcohol cryogel beads.Aspergillus clavatus was the best producer of extracellular ribonuclease. Enzyme productivity and growth of free and immobilized cells in shake flasks and agitated bioreactor were studied. Ribonuclease production and growth behaviour depended on concentrations of glucose, peptone and soybean in the culture medium. Enzyme production was influenced by agitation and aeration intensity. In repeated batch, shake-flask cultures, the immobilized cells showed 2 to 3.5 times higher enzyme activity than free cells. The optimal conditions in a bioreactor were at 150 rev/min agitation speed and 0.5 vol/vol.min aeration. Enzyme productivity of immobilized cells (237 units/g dry mycelium.h) was 2.1 times higher than the productivity of free cells in a bioreactor, and 2.3 times higher than that of a shake-flask culture.R.J. Manolov is with the Institute of Microbiology, Department of Enzymes, Bulgarian Academy of Sciences, Georgy Bonchev Street 26, 1113 Sofia, Bulgaria.  相似文献   

9.
Li JZ  Liu HY  Lin YJ  Hao XJ  Ni W  Chen CX 《Steroids》2008,73(6):594-600
Six new C21 steroidal glycosides, named curassavosides A–F (3–8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (4), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (5), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (8), respectively. All compounds (1–8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.  相似文献   

10.
Morquio syndrome type B is an inherited, lysosomal storage disease characterised by a marked deficiency in acid β-d-galactosidase, while the 2-acetamido-2-deoxy-β-d-galactose 6-sulphate sulphatase activity is normal. Urinary oligosaccharides were studied in order to evaluate the effect of the diminished β-d-galactosidase activity on the catabolism of glycoconjugates and to compare their structures with those excreted by patients with GM1-gangliosidosis. The following oligosaccharides were isolated: β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)-β-d-Manp-(1→4)- d-GlcpNAc (1), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)-[α-d-Manp- (1→3)]-β-d-Manp-(1→4)-d-GlcpNAc (2a), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)- α-d-Manp-(1→3)-[α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-GlcpNAc (2b), β-d-Galp- (1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→3)-[β-d-Galp-(1→4)-β-d-GlcpNAc-(1→ 2)-α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-GlcpNAc (3), β-d-Galp-(1→4)-β-d-Glcp- NAc-(1→2)-α-d-Manp-(1→3)-{β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-[β-d-Galp- (1→4)-β-d-GlcpNAc-(1→6)]-α-d-Manp-(1→6)}-β-d-Manp-(1→4)-d-GlcpNAc (4), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→3)-[β-d-GlcpNAc-(1→4)]-[β- d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-Glcp- NAc (5). Significant differences between Morquio syndrome type B and GM1-gangliosidosis have been observed, with regard to the excretion rate and the specific structures of urinary oligosaccharides. Compounds 2a, 2b, and 5 are novel members of the series of oligosaccharides isolated from the urine of patients with inherited, lysosomal storage diseases.  相似文献   

11.
Sock J  Rohringer R  Kang Z 《Plant physiology》1990,94(3):1376-1389
Endo-β-1,3-glucanase activity in intercellular washing fluid (IWF) from leaves of wheat (Triticum aestivum) increased 10-fold 4 days after leaves were infected with the wheat stem rust fungus (Puccinia graminis f.sp. tritici), while exo-β-1,3-glucanase activity remained unchanged at a low level. Heat and ethylene stress had no effect, whereas mercury treatment resulted in a 2-fold increase in endo-β-1,3-glucanase activity. With a new method of activity staining using laminarin-Remazol brilliant blue as substrate in overlay gels, 18 electrophoretic forms of endo-β-1,3-glucanase were detected in IWF from unstressed leaves and up to 24 forms in IWF from stem rust-infected leaves. Most of the increase in β-1,3-glucanase activity and in the number of β-1,3-glucanases after rust infection was due to a nonspecific, stress-related effect on the plant, but two major forms of the enzyme probably originated from the fungus. β-1,3-Glucanase was localized cytochemically with anti-barley-β-1,3-glucanase antibodies. With preembedding labeling, the enzyme was demonstrated on the outside of host and fungal cell walls. Postembedding labeling localized the enzyme in the host plasmalemma and in the domain of host cell walls adjoining the plasmalemma, throughout walls of intercellular hyphal cells and haustoria, in the fungal cytoplasm, and in the extrahaustorial matrix. Cross-reactivity of β-1,3-glucanases from wheat and germinated uredospores of the rust fungus with the anti-barley-β-1,3-glucanase antibodies was confirmed in dot blot assays and on Western blots.  相似文献   

12.
Investigation of the acetolysis products of the sulphated polysaccharide of the seaweed Aeodes ulvoidea led to the isolation and characterization of the following oligosaccharides: 3-O-α- -galactopyranosyl- -galactose (1), 3-O-(2-O-methyl-α- -galactopyranosyl)- -galactose (2), 4-O-β- -galactopyranosyl-2-O-methyl- -galactose (3), 4-O-β- -galactopyranosyl-2-O-methyl- -galactose (4), O-β- -galactopyranosyl-(1→4)-O-α- -galactopyranosyl-(1→3)- -galactose (5), O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)- -galactose (6), O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)-2-O-methyl- -galactose (7), O-(2-O-methyl-α- -galactopyranosyl)-(1→3)-O-β- -galactopyranosyl-(1→4)-2-O-methyl- -galactose (10), and O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)-O-α- -galactopyranosyl-(1→3)- -galactose. In addition, the isolation of a tetrasaccharide possessing alternating - and -galactose residues demonstrates the hitherto unexpected presence of -galactose in the polysaccharide. The structure of the polysaccharide is discussed.  相似文献   

13.
A new steroidal glycoside, agaveside D, isolated from the fruits of Agave cantata was characterized as 3β-{- -rhamnopyranosyl-(1→2), β- -glycopyranosyl-(1→3)-β- -glucopyranosyl[β- -xylopyransoyl-(1→4)-- -rhamnopyranosyl-(1→2)]-β- -glucopyranosyl}-25R-5- spirostane on the basis of chemical degradation and spectrometry.  相似文献   

14.
EglA, a β-1,4-glucanase isolated from the ruminal fungus Piromyces rhizinflata, shows promise in a wide range of industrial applications because of its broad substrate specificity. In this study, EglA was immobilized on different supporting materials including poly(dimethylsiloxane) (PDMS), Si wafer, textured Si wafer, and indium tin oxide-coated (ITO-coated) glass. The binding abilities of PDMS and Si wafer toward EglA were significantly higher than those of the other supporting materials. The optimized temperature and pH conditions for EglA immobilized on PDMS and on Si wafer were further determined by a response surface methodology (RSM) combined with a central composite design (CCD). The results indicated that the optimum pH and temperature values as well as the specific β-glucanase activity of EglA on PDMS were higher than those of free-form EglA. In addition, EglA immobilized on PDMS could be reused up to six times with detectable enzyme activity, while the enzyme activity of Eg1A on Si wafer was undetectable after three cycles of enzyme reaction. The results demonstrate that PDMS is an attractive supporting material for EglA immobilization and could be developed into an enzyme chip or enzyme tube for potential industrial applications.  相似文献   

15.
Condensation of methyl 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranoside with 2,3,4,6-tetra-O-benzyl-α- -glucopyranosyl chloride gave a mixture of methyl O-[2,3,4,6-tetra-O-benzyl-α- (4) and -β- -glucopyranosyl]-(1→2)-O-[(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-(1→3)]-4-O-acetyl-α- -rhamnopyranoside (9) in 43:7 proportion in 63% yield. After chromatographic separation, removal of the benzyl and acetyl groups gave methyl O-α- -glucopyranosyl-(1→2)-[O-α- -rhamnopyranosyl-(1→3)]-α- -rhamnopyranoside and the β anomer. Removal of benzyl groups of 4 was followed by tritylation, acetylation, and detritylation of the α- -glucopyranosyl group, and finally condensation with benzyl (2,3,4-tri-O-benzyl- -glucopyranosyl chloride)uronate gave a mixture of two tetrasaccharides (15 and 16), containing the α- and β- -glucopyranosyluronic acid groups in the ratio 81:19, and an overall yield of 71%. After chromatographic separation, alkaline hydrolysis and hydrogenation of 15 gave methyl O-α- -glucopyranosyluronic acid-(1→6)-O-α- -glucopyranosyl-(1→2)-[O-α- -rhamnopyranosyl-(1→3)]-α- -rhamnopyranoside. The β- anomer was obtained by similar treatment of 16. 6-O-α- -glucopyranosyluronic acid-α,β- -glucopyranose was synthesized as a model compound.  相似文献   

16.
灵芝子实体、菌丝体及孢子粉中多糖成分差异比较研究   总被引:5,自引:0,他引:5  
为探讨灵芝子实体、菌丝体和孢子粉3种材料中多糖成分的差异,分别运用苯酚硫酸法进行多糖含量测定,运用离子色谱分析其酸水解后单糖组成,并运用HPLC分析各多糖图谱及经α-淀粉酶和β-1,3-葡聚糖酶处理后HPLC图谱的变化,结果发现,灵芝菌丝体中多糖含量最高,达到3.81%,孢子粉多糖含量为1.8%,灵芝子实体中多糖含量最低,仅为0.59%;水解后的单糖组成及摩尔比也有差异,子实体的单糖主要为葡萄糖和半乳糖,菌丝体和孢子粉的单糖主要为葡萄糖;HPLC图谱显示3种多糖出峰位置和分子量也不同,酶解效果表明多糖结构也相差较大。各样品多糖对小鼠巨噬细胞RAW264.7释放NO的产量的影响上,菌丝体与子实体多糖都表现出了很好的活性,而孢子粉多糖却呈现出较低活性。实验结果表明灵芝子实体、菌丝体和孢子粉3种材料的多糖成分差异大,在医药保健品使用中应区分使用。  相似文献   

17.
A major isoform of β-1,3-glucanase from pearl millet seedlings was purified following ammonium sulfate precipitation, ion-exchange chromatography and gel filtration techniques. The enzyme had a molecular weight of 20.5 kDa on SDS–PAGE and was highly basic with a pI of 9.6. It was thermostable with a broad temperature optima for activity ranging from 37 to 70°C and had an optimum pH of 5.2. Mercuric chloride and para-chloromercuric benzoate inhibited completely the enzyme while manganese chloride activated it. Antibodies raised against the purified β-1,3-glucanase identified another protein with an apparent molecular weight of 30 kDa in western reactions. Significance of this enzyme in pearl millet–downy mildew host–pathogen interaction is discussed.  相似文献   

18.
In this study, two procedures for the immobilization of β-glucosidase on silica are compared. The first approach comprises a preliminary stabilization of β-glucosidase by coupling with dextran dialdehyde and subsequent immobilization of the obtained β-glucosidase dextran dialdehyde with aminopropylsilica. In the second approach, β-glucosidase is immobilized on silica modified with a dextran-dialdehyde coating. Enzyme immobilized via coupling with dextran dialdehyde and subsequent attachment with aminopropylsilica show a remarkably enhanced thermostability. Enzyme immobilized by the alternative approach demonstrated an inferior thermoresistance. The difference in behavior of the immobilized enzyme obtained via these two methods can be explained considering the number of links between the enzyme and carrier. Enzyme immobilized on dextran dialdehydecoated silica is fixed via a limited number of links. On the other hand, with soluble β-glucosidase-dextran conjugates, the enzyme configuration is already stabilized via a high number of links with the dextran backbone. It is clear from this study that the sequence of reactions in immobilizing enzymes on silica support via a dextran-dialdehyde linker has a significant effect on the final properties.  相似文献   

19.
Kim YW  Chen H  Withers SG 《Carbohydrate research》2005,340(18):2735-2741
The application of the hyperactive glycosynthase derived from Agrobacterium sp. β-glucosidase (AbgE358G-2F6) to the synthesis of xylo-oligosaccharides by using -d-xylopyranosyl fluoride as donor represents the first successful use of glycosynthase technology for xylosyl transfer. Transfer to p-nitrophenyl β-d-glucopyranoside yields di- and trisaccharide products with β-(1→4) linkages in 63% and 35% yields, respectively. By contrast, transfer to p-nitrophenyl β-d-xylopyranoside yielded the β-(1→3) linked disaccharide and β-d-Xyl-(1→4)-β-d-Xyl-(1→3)-β-d-Xyl-pNP as major products in 42% and 30% yields, respectively. Transfer of xylose to β-d-Xyl-(1→4)-β-d-Xyl-pNP yielded the β-(1→4) linked trisaccharide in 98% yield, thereby indicating that transfers to xylo-disaccharides occur with formation of β-(1→4) bonds. Xylosylation of carbamate-protected deoxyxylonojirimycin produced a mixture of di- and tri-‘saccharide’ products in modest yields.  相似文献   

20.
A simple biosurfactant-based hydrophobization procedure for poly(vinyl alcohol) (PVA) cryogels was developed allowing effective immobilization of hydrocarbon-oxidizing bacteria. The resulting partially hydrophobized PVA cryogel granules (granule volume 5 microl) contained sufficient number (6.5 x 10(3)) of viable bacterial cells per granule, possessed high mechanical strength and spontaneously located at the interface in water-hydrocarbon system. Such interfacial location of PVA granules allowed high contact of immobilized biocatalyst with hydrophobic substrate and water phase, thus providing bacterial cells with mineral and organic nutrients. As a result, n-hexadecane oxidation efficiency of 51% after 10-day incubation was achieved using immobilized biocatalyst. PVA cryogels with increased hydrophobicity can be used for immobilization of bacterial cultures performing oxidative transformations of water-immiscible organic compounds. Immobilization of in situ biosurfactant producing Rhodococcus bacteria into PVA cryogel is discussed. PVA cryogel granules with entrapped alkanotrophic rhodococcal cells were stable after 10-month storage at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号