首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared the contributions of impaired neuromuscular transmission (transmission fatigue) and impaired muscle contractility (contractile fatigue) to fatigue of the isolated rat diaphragm. To make this comparison, we measured the differences in active tension elicited by direct muscle stimulation and by indirect (phrenic nerve) stimulation before and after fatigue induced by indirect supramaximal stimulation at varying frequencies and durations. Transmission fatigue was observed after all experimental protocols. Although significant contractile fatigue was not demonstrated after brief periods of low-frequency stimulation (6 min, 15 Hz, 25% duty cycle), it was present after longer or higher frequency stimulation. We repeated the direct stimulation in the presence of neuromuscular blockade with 6 microM d-tubocurarine to demonstrate that a reduced response to stimulation of intramuscular branches of the phrenic nerve during direct stimulation was not responsible for the apparent contractile fatigue. Since we found significant decreases in the response to direct stimulation even after neuromuscular blockade, we could verify the presence of contractile fatigue. We conclude that both contractile and transmission fatigue can occur in the isolated rat diaphragm and that transmission fatigue is a much more important factor after brief periods of fatiguing contractions.  相似文献   

2.
Relative contribution of neurotransmission failure to diaphragm fatigue   总被引:1,自引:0,他引:1  
Two procedures were used to estimate the relative contribution of neurotransmission failure (NF) to fatigue of the rat diaphragm at different rates of phrenic nerve stimulation. In one, direct muscle stimulation was intermittently superimposed on neural stimulation of the diaphragm, and the relative contribution of NF was estimated by the difference in generated tension. In a second procedure, diaphragm fatigue was induced by using either direct muscle stimulation (with complete blockade of the neuromuscular junction by d-tubocurare) or phrenic nerve stimulation. The relative contribution of NF to diaphragm fatigue was then estimated by comparing the force loss during these two modes of stimulation. With both procedures, it was observed that 1) the relative contribution of NF to diaphragm fatigue was less than 45% at each frequency of phrenic nerve stimulation; 2) the relative contribution of NF to diaphragm fatigue increased at higher rates of phrenic stimulation, reaching a maximum at 75 pulses/s; and 3) the relative contribution of NF to diaphragm fatigue reached a plateau after 2 min of repetitive stimulation.  相似文献   

3.
The influence of 90 h of acute nutritional deprivation (ND) on the cross-sectional areas of muscle fibers and the contractile and fatigue properties of the adult rat diaphragm were determined. Isometric contractile properties and fatigue resistance of the diaphragm were measured by means of an in vitro nerve-muscle strip preparation. Contractions were evoked by using phrenic nerve stimulation (left hemidiaphragm) or direct muscle stimulation (right hemidiaphragm) in the presence of curare. Acute ND resulted in a 20% reduction in body weight. No significant decrements in diaphragm or soleus weights were noted in the ND animals compared with controls (CTL), whereas the weight of the medial gastrocnemius was reduced by 20% in the ND animals. Peak twitch and tetanic tensions (normalized for the weight of the diaphragm strip) were not reduced in ND compared with CTL animals after either nerve or muscle stimulation. The fatigue index of the diaphragm was significantly reduced in ND animals only after nerve stimulation. After the fatigue test, there was rapid recovery of the additional fatigue noted with nerve stimulation. The proportions of type I and II muscle fibers of the diaphragm were similar in the CTL and ND animals. No differences in diaphragm cross-sectional areas were noted for either type I or II muscle fibers in the CTL and ND animals. It is concluded that acute ND has no effect on diaphragm contractility or morphometry and only an inconsequential influence on diaphragm fatigue.  相似文献   

4.
Electrical and mechanical responses have been obtained in situ and in vitro from the superior oblique muscle stimulated by single and repetitive electrical pulses, applied to the trochlear nerve. Two different types of muscle fibers are described, the twitch and the slow. The slow type is characterized electrically by the presence of junctional potentials, which have reversal potentials between -10 and -20 mv, and do not show propagated responses or spikes, during nerve stimulation. When the slow muscle fibers are repetitively stimulated in situ, a prolonged contraction is maintained during stimulation. At the time, the recorded electrical activity is produced locally, at the level of the neuromuscular junctions of the slow fibers. These results indicate that the contractile mechanism of the slow muscle fibers is activated locally and segmentally.  相似文献   

5.
Changes in alphaB-crystallin content in adult rat soleus and extensor digitorum longus (EDL) were examined after 8 wk of 3,5, 3'-triiodothyronine (T(3)) and propylthiouracil (PTU) treatments. Cellular distributions of alphaB-crystallin expression related to fiber type, and distribution shifts with these treatments were also examined in detail from the gray level of reactivity to specific anti-alphaB-crystallin antibody. alphaB-crystallin content in both soleus and EDL muscles was significantly decreased after T(3), and that in EDL was significantly increased over twofold after PTU treatment. In both control soleus and EDL muscles, the gray level of type I fibers was higher than that of type II fibers. alphaB-crystallin expression among type II subtypes was muscle specific; the order was type I > IIa > IIx > IIb in control EDL muscle and type IIx > or = IIa in soleus muscle. The relation was basically unchanged in both muscles after T(3) treatment and was, in particular, well maintained in EDL muscle. Under hypothyroidism conditions with PTU, the mean alphaB-crystallin levels of type IIa and IIx fibers were significantly lower than levels under control conditions. Thus the relation between fiber type and the expression manner of stress protein alphaB-crystallin is muscle specific and also is well regulated under thyroid hormone, especially in fast EDL muscle.  相似文献   

6.
Effect of cocaine on responses of mouse phrenic nerve-diaphragm preparation   总被引:1,自引:1,他引:0  
Effects of 5 to 40 microM cocaine on the compound action potential (AP) and tension responses of the mouse phrenic nerve-diaphragm preparation were monitored following nerve and muscle stimulation at 37 degrees C. Cocaine caused concentration dependent reduction in amplitude of the nerve AP, muscle AP, and tension response to a single nerve stimulus, and greater reduction in amplitude of these responses to repetitive nerve stimuli at 100 Hz for 0.5 sec. Cocaine caused similar reduction in the muscle AP and tension responses to direct muscle stimulation in the presence or absence of curare, and markedly reduced the overshoot, total potential, and maximum rate of rise and fall of intracellularly recorded muscle AP, without affecting the resting potential, or the contracture responses evoked by caffeine. These results indicate that cocaine reduces skeletal muscle function by reducing the excitability of muscle and nerve membranes, without significantly affecting neuromuscular transmission, excitation-contraction coupling or contractility.  相似文献   

7.
This study was designed to investigate the effect of intense training on muscle glycogen stores under conditions of controlled carbohydrate (CHO) intake. On two separate occasions, 10 highly trained distance runners increased their training load for 5 days (20 km/day, approximately 80% maximal O2 consumption) while eating a diet whose carbohydrate composition either equaled (EQ-CHO) or contained approximately 50% of the runner's estimated daily expenditure (LO-CHO). Total muscle glycogen levels were lower after the LO-CHO regimen. Photometric analysis of the glycogen content in individual fibers revealed that 27% type I and 17% type II fibers had optical densities less than 0.2 U after the LO-CHO regimen, whereas 7% type I and 0% type II were similarly depleted after the EQ-CHO diet. A linear relationship was observed between the histochemical and direct chemical analysis of muscle glycogen content. Treadmill O2 uptake measured at 185 and 238 m/min was higher during the LO-CHO than the EQ-CHO regimen. Ratings of perceived exertion were higher during the 238-m/min run for the LO-CHO regimen. After 3 days of rest, running economy and perception of effort returned to pretraining levels and muscle glycogen stores were approximately 85% of the pretraining values. Thus when CHO intake was only approximately 50% of the energy requirements there was a marked depletion of muscle glycogen stores, particularly in type I fibers, and a concomitant decrease in running economy and increased perception of fatigue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The mechanism for fatigue of the adductor pollicis was studied in normal subjects during maximal voluntary contractions (MVC) sustained for 90-100 s, by comparing the force and electrical response of this muscle to voluntary motor drive with that obtainable with artificial stimulation of the ulnar nerve. The adequacy of nerve stimulation was checked by recording simultaneously the electrical response of a nonfatiguing muscle, the abductor of the small finger. The decrease in force and in the natural electrical activity with fatigue was accompanied by a parallel decrease in the amplitude of synchronous muscle action potentials (M waves) evoked by artificial stimulation of the ulnar nerve at different frequencies. The decline in M-wave amplitude in the adductor pollicis was not due to a submaximal nerve stimulation, since the amplitudes recorded simultaneously from the nonfatiguing abductor digiti minimi remained unchanged. The force and the electrical responses from the adductor pollicis recovered in parallel with a half time of approximately 1 min. These results suggest that the loss of force of the adductor pollicis with fatigue and its subsequent recovery are largely determined by the extent of neuromuscular propagation failure. The slow recovery of the M-wave amplitude during repetitive stimulation suggests that it may be related to some aspect of muscle metabolism.  相似文献   

9.
It is unclear whether accumulation of lactate in skeletal muscle during exercise contributes to muscle fatigue. The purpose of the present study was to examine the effect of lactate infusion on muscle fatigue during prolonged indirect stimulation in situ. For this purpose, the plantaris muscle was electrically stimulated (50 Hz, for 200 ms, every 2.7 s, 5 V) in situ through the sciatic nerve to perform concentric contractions for 60 min while either saline or lactate was infused intravenously (8 rats/group). Lactate infusion (lactate concentration approximately 12 mM) attenuated the reduction in submaximal dynamic force (-49 vs. -68% in rats infused with saline; P < 0.05). Maximum dynamic and isometric forces at the end of the period of stimulation were also higher (P < 0.05) in rats infused with lactate (3.8 +/- 0.3 and 4.4 +/- 0.3 N) compared with saline (3.1 +/- 0.2 and 3.6 +/- 0.2 N). The beneficial effect of lactate infusion on muscle force during prolonged stimulation was associated with a better maintenance of M-wave characteristics compared with control. In contrast, lactate infusion was not associated with any reduction in muscle glycogen utilization or with any reduction of fatigue at the neuromuscular junction (as assessed through maximal direct muscle stimulation: 200 Hz, 200 ms, 150 V).  相似文献   

10.
Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.  相似文献   

11.
Chronically paralyzed muscle requires extensive training before it can deliver a therapeutic dose of repetitive stress to the musculoskeletal system. Neuromuscular electrical stimulation, under feedback control, may subvert the effects of fatigue, yielding more rapid and extensive adaptations to training. The purposes of this investigation were to 1) compare the effectiveness of torque feedback-controlled (FDBCK) electrical stimulation with classic open-loop constant-frequency (CONST) stimulation, and 2) ascertain which of three stimulation strategies best maintains soleus torque during repetitive stimulation. When torque declined by 10%, the FDBCK protocol modulated the base stimulation frequency in three ways: by a fixed increase, by a paired pulse (doublet) at the beginning of the stimulation train, and by a fixed decrease. The stimulation strategy that most effectively restored torque continued for successive contractions. This process repeated each time torque declined by 10%. In fresh muscle, FDBCK stimulation offered minimal advantage in maintaining peak torque or mean torque over CONST stimulation. As long-duration fatigue developed in subsequent bouts, FDBCK stimulation became most effective ( approximately 40% higher final normalized torque than CONST). The high-frequency strategy was selected approximately 90% of the time, supporting that excitation-contraction coupling compromise and not neuromuscular transmission failure contributed to fatigue of paralyzed muscle. Ideal stimulation strategies may vary according to the site of fatigue; this stimulation approach offered the advantage of online modulation of stimulation strategies in response to fatigue conditions. Based on stress-adaptation principles, FDBCK-controlled stimulation may enhance training effects in chronically paralyzed muscle.  相似文献   

12.
13.
Lewis, Michael I., Thomas J. LoRusso, and Mario Fournier.Effect of insulin-like growth factor I and/or growthhormone on diaphragm of malnourished adolescent rats.J. Appl. Physiol. 82(4):1064-1070, 1997.Young growing animals appear to havesignificantly reduced "nutritional reserve" to short periods ofunstressed starvation compared with adults, with resultant growtharrest and/or atrophy of diaphragm (Dia) muscle fibers. The aimof this study was to assess in an adolescent rat model of acutenutritional deprivation (ND; 72 h) the impact of insulin-like growthfactor I (IGF-I), with or without added growth hormone (GH), on thecross-sectional areas (CSA) of individual Dia muscle fibers. Fivegroups were studied: 1) control(Ctr); 2) ND;3) ND given IGF-I (ND/IGF-I); 4) ND given GH (ND/GH); and5) ND given a combination of IGF-I and GH (ND/IGF-I/GH). IGF-I was given by a subcutaneously implanted osmotic minipump (200 µg/day), whereas GH was administered twice daily by a subcutaneous injection (250 µg every 12 h). Isometric contractile and fatigue properties of the Dia were determined in vitro.Forces were normalized for muscle CSA (i.e., specific force). Dia fibertype proportions were determined histochemically, and fiber CSA wasquantified by using a computer-based image-processing system. Totalserum IGF-I concentrations were significantly reduced in ND and ND/GHanimals, compared with Ctr, and elevated in the groups receiving IGF-I.The provision of growth factors did not alter the contractile orfatigue properties of ND animals. Dia fiber type proportions weresimilar among the groups. In ND animals, there was a significantreduction in the CSA of types I, IIa, IIx, and IIc Dia fibers comparedwith Ctr. The administration of IGF-I alone or in combination with GHto ND animals significantly diminished the reduction in Dia fiber size.GH alone had no effect on Dia fiber size in ND animals. We concludethat with acute ND the peripheral resistance to the action of GHappears to be bypassed by the administration of IGF-I alone or incombination with GH.

  相似文献   

14.
Acetylcholinesterase (AChE) plays an essential role in neuromuscular transmission. Not surprisingly, neuromuscular transmission during repetitive nerve stimulation is severely depressed in the AChE knockout mouse (KO). However, whether this deficit in AChE leads to skeletal muscle changes is not known. We have studied the in vitro contractile properties of the postural and locomotor soleus muscles of adult KO and normal (wildtype, WT) mice, and this was completed by histological and biochemical analyses. Our results show that muscle weight, cross-sectional area of muscle fibres and absolute maximal isometric force are all reduced in KO mice compared with WT mice. Of interest, the relative amount of slow myosin heavy chain (MHC-1) in muscle homogenates and the percentage of muscle fibres expressing MHC-1 are decreased in the KO mice. Surprisingly, AChE ablation does not modify twitch kinetics, absolute maximal power, fatigue resistance or citrate synthase activity, despite the reduced number of slow muscle fibres. Thus, a deficit in AChE leads to alterations in the structure and function of muscles but these changes are not simply related to the reduced body weight of KO mice. Our results also suggest that this murine model of congenital myasthenic syndrome with endplate AChE deficiency combines alterations in both neurotransmission and intrinsic muscle properties.  相似文献   

15.
The influence of dexamethasone on diaphragm (DIA) fatigue, oxidative capacity, and fiber cross-sectional areas (CSA) was determined in growing hamsters. One group received dexamethasone by daily subcutaneous injection for 21 days (D animals), while pair-weight (P) and free-eating controls (CTL) received saline subcutaneously. Isometric contractile properties of the DIA were determined in vitro by supramaximal direct muscle stimulation in the presence of curare. DIA fatigue resistance was determined through repetitive stimulation at 40 pulses/s for 2 min. A computer-based image-processing system was used to histochemically determine muscle fiber-type proportions, CSA, and succinate dehydrogenase activities. The medial gastrocnemius muscle (MG) was used as a limb muscle control, with histochemical studies being performed on both the superficial (s) and deep/red (r) portions. Dexamethasone markedly attenuated the normal increment in body weight over the 3-wk period. DIA fatigue resistance was significantly reduced in the D compared with CTL and P animals. Dexamethasone had no effect on fiber-type proportions of the DIA or MGr (MGs contained only type II fibers). In the DIA, the CSA of type II fibers was reduced 33% in D and 18.5% in P animals compared with CTL. Although no significant atrophy was noted in the type I DIA fibers of either D or P animals, a trend toward significance was noted in D animals compared with CTL. In the MGs, the CSA of type II fibers was reduced 33% in D and 16.5% in P animals compared with CTL. Significant atrophy of type I and II fibers of the MGr was noted in D animals compared with CTL (33.8 and 35% reductions, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Large amounts of glycogen accumulate in rat skeletal muscle fibers during the late fetal stages and are mobilized in the first postnatal days. This glycogen depletion is relatively slow in the immature leg muscles, in which extensive deposits are still found 24 hr after birth and, to some extent, persist until the 3rd day. In the more differentiated psoas muscle and especially in the diaphragm, the glycogen stores are completely mobilized already during the early hours. Section of the sciatic nerve 3 days before birth or within the first 2 hr after delivery does not affect glycogen depletion in the leg muscles. Neonatal glycogenolysis in rat muscle fibers takes place largely by segregation and digestion of glycogen particles in autophagic vacuoles. These vacuoles: (a) are not seen in fetal muscle fibers or at later postnatal stages, but appear concomitantly with the process of glycogen depletion and disappear shortly afterwards; (b) are prematurely formed in skeletal muscles of fetuses at term treated with glucagon; (c) contain almost exclusively glycogen particles and no other recognizable cell constituents; (d) have a double or, more often, single limiting membrane and originate apparently from flattened sacs sequestering glycogen masses; (e) are generally found to contain reaction product in preparations incubated from demonstration of acid phosphatase activity. The findings emphasize the role of the lysosomal system in the physiological process of postnatal glycogen mobilization and appear relevant in the interpretation of type II glycogen storage disease.  相似文献   

17.
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.  相似文献   

18.
This study compared human muscles following long-term reduced neuromuscular activity to those with normal functioning regarding single fiber properties. Biopsies were obtained from the vastus lateralis of 5 individuals with chronic (>3 yr) spinal cord injury (SCI) and 10 able-bodied controls (CTRL). Chemically skinned fibers were tested for active and passive mechanical characteristics and subsequently classified according to myosin heavy chain (MHC) content. SCI individuals had smaller proportions of type I (11 +/- 7 vs. 34 +/- 5%) and IIa fibers (11 +/- 6 vs. 31 +/- 5%), whereas type IIx fibers were more frequent (40 +/- 13 vs. 7 +/- 3%) compared with CTRL subjects (P < 0.05). Cross-sectional area and peak force were similar in both groups for all fiber types. Unloaded shortening velocity of fibers from paralyzed muscles was higher in type IIa, IIa/IIx, and IIx fibers (26, 65, and 47%, respectively; P < 0.01). Consequently, absolute peak power was greater in type IIa (46%; P < 0.05) and IIa/IIx fibers (118%; P < 0.01) of the SCI group, whereas normalized peak power was higher in type IIa/IIx fibers (71%; P < 0.001). Ca(2+) sensitivity and passive fiber characteristics were not different between the two groups in any fiber type. Composite values (average value across all fibers analyzed within each study participant) showed similar results for cross-sectional area and peak force, whereas maximal contraction velocity and fiber power were more than 100% greater in SCI individuals. These data illustrate that contractile performance is preserved or even higher in the remaining fibers of human muscles following reduced neuromuscular activity.  相似文献   

19.
20.
Lewis, Michael I., Thomas J. LoRusso, and Mario Fournier.Anabolic influences of insulin-like growth factor I and/or growth hormone on the diaphragm of young rats. J. Appl. Physiol. 82(6): 1972-1978, 1997.It iscontroversial whether insulin-like growth factor I (IGF-I), growthhormone (GH), or their combination might enhance body growthand/or tissue anabolism in the well-fed animal with an intactsomatotrophic axis. To assess this further, we studied four groups ofadolescent rats: 1) control (Ctr),2) GH,3) IGF-I, and4) GH/IGF-I. IGF-I was given via anosmotic minipump, whereas GH was injected subcutaneously for a period of 72 h. Diaphragm (Dia) contractile and fatigue properties were determined in vitro. Quantitative histochemical and morphometric analyses were performed on Dia fibers. Total serum IGF-I levels weresignificantly increased in the groups receiving growth factors. Although body weight increased to a greater extent in the animals receiving growth factors, a further synergistic effect was noted in theGH/IGF-I animals compared with either GH or IGF-I groups. Costal Diamass was greater in the groups receiving growth factors. The Dia ofGH/IGF-I animals was more fatigue resistant than the Dia in Ctr. Thecross-sectional area of types IIa and IIx fibers were increased to asimilar extent in all groups receiving growth factors compared withCtr. Succinate dehydrogenase activity of type IIa fibers wassignificantly greater in the GH/IGF-I animals compared with the othergroups. We conclude that the short-term provision of growth factors towell-nourished, normally growing adolescent rats can accelerate bodygrowth and promote selective hypertrophy of predominantly type II Diafibers.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号