首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The scanning electron microscopical appearances of cells isolated from different regions of Xenopus laevis embryos of different stages, and cultured in vitro have been compared. Blastula inner ectoderm cells initially show filopodia, then become flattened onto the substrate and then form pseudopodia. Blastula outer ectoderm cells are initially similar, but do not form pseudopodia. Most of the ectoderm cells from gastrulae and neurulae are featureless. Endoderm cells from blastulae do not initially form filopodia, but later form pseudopodia. Most of the endoderm cells from gastrulae and neurulae show neither filopodia nor pseudopodia, but in the gastrula some elongated, cylindrical cells are observed. Thus cells change their appearance after the three hour culture period; cells from different regions of embryos of the same stage show different appearances in vitro ; and cells from equivalent regions of embryos of different stages show different behaviours in vitro.  相似文献   

3.
4.
Chemotaxis of amoeboid cells is driven by actin filaments in leading pseudopodia and actin-myosin filaments in the back and at the side of the cell to suppress pseudopodia. In Dictyostelium, cGMP plays an important role during chemotaxis and is produced predominantly by a soluble guanylyl cyclase (sGC). The sGC protein is enriched in extending pseudopodia at the leading edge of the cell during chemotaxis. We show here that the sGC protein and the cGMP product have different functions during chemotaxis, using two mutants that lose either catalytic activity (sGCDelta cat) or localization to the leading edge (sGCDeltaN). Cells expressing sGCDeltaN exhibit excellent cGMP formation and myosin localization in the back of the cell, but they exhibit poor orientation at the leading edge. Cells expressing the catalytically dead sGCDelta cat mutant show poor myosin localization at the back, but excellent localization of the sGC protein at the leading edge, where it enhances the probability that a new pseudopod is made in proximity to previous pseudopodia, resulting in a decrease of the degree of turning. Thus cGMP suppresses pseudopod formation in the back of the cell, whereas the sGC protein refines pseudopod formation at the leading edge.  相似文献   

5.
Mitochondrial and nuclear DNAs contribute to encode the whole mitochondrial protein complement. The two genomes possess highly divergent features and properties, but the forces influencing their evolution, even if different, require strong coordination. The gene content of mitochondrial genome in all Metazoa is in a frozen state with only few exceptions and thus mitochondrial genome plasticity especially concerns some molecular features, i.e. base composition, codon usage, evolutionary rates. In contrast the high plasticity of nuclear genomes is particularly evident at the macroscopic level, since its redundancy represents the main feature able to introduce genetic material for evolutionary innovations. In this context, genes involved in oxidative phosphorylation (OXPHOS) represent a classical example of the different evolutionary behaviour of mitochondrial and nuclear genomes. The simple DNA sequence of Cytochrome c oxidase I (encoded by the mitochondrial genome) seems to be able to distinguish intra- and inter-species relations between organisms (DNA Barcode). Some OXPHOS subunits (cytochrome c, subunit c of ATP synthase and MLRQ) are encoded by several nuclear duplicated genes which still represent the trace of an ancient segmental/genome duplication event at the origin of vertebrates.  相似文献   

6.
Division of the life cycle of Cnidaria (except for Anthozoa) into two independent generations, polypoid and medusoid, i.e., metagenesis, is considered to be unjustified. Like other Metazoa, their life cycle can be divided into three periods: embryonic, postembryonic, and definitive, i.e., according to the age [9, 10]. An important feature of Cnidaria is the transition of some postembryonic stages to the sedentary mode of life. As in other animals, this change results in a substantial reduction in organismic integrity and an anarchical type of cell division. Some researchers [3, 5, 7] regard this type of cell division as original. However, the anarchical type of cell division itself is secondary and, for this reason, cannot be ancestral to other types. The statement that the spiral type of cell division originated from the pseudo-spiral type also arouses serious criticism. The spiral type is caused by a change in the structure of the blastomere ooplasm rather than the appropriate arrangement of blastomeres.  相似文献   

7.
Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile.  相似文献   

8.
Genomic variations represent the molecular basis of the biodiversity of living organisms on which selection operates to generate evolution. In eukaryotes, genomic variability can be experienced in both nuclear and organellar, i.e. mitochondrial and plastid (where present), genomes, which can follow completely different evolution pathways, as revealed by comparative genomics analyses. In Metazoa, for which a substantial number of complete genome sequences are available (nuclear, but mainly mitochondrial), we are just starting to grasp the selective pressures operating on some basic features of the genome as a whole. In this brief review, we discuss the variability of the mitochondrial metazoan genome, with particular reference to mitochondrial DNA in mammals. In light of the recent assumption that a small segment of mitochondrial DNA may be used, particularly in Metazoa, as a species marker, some data on mitochondrial gene variability at the inter-species/intra-species boundary are reported. Intra-species variability has been evaluated in four mammalian species, Homo sapiens, Bos taurus, Sus scrofa and Canis familiaris, whereas the relationship between intra- and inter-species variability has been investigated in Bos taurus and Bos indicus.  相似文献   

9.
An unusual heterolobosean amoeba, isolate LO, was isolated recently from a sample with a salinity of ~4‰, from Lake Turkana in East Africa. 18S rDNA phylogenies confirm that isolate LO branches among halophilic amoeboflagellates assigned to Pharyngomonas. We examined the ultrastructure of the amoeba and cyst stages of isolate LO, as well as the amoebae and cysts of Pharyngomonas kirbyi (isolates AS12B and SD1A). The amoebae of all three isolates lacked discrete dictyosomes and had discoidal/flattened mitochondrial cristae, but the mitochondria were not enrobed by rough endoplasmic reticulum. The cysts of all three isolates showed a thick, bipartite cyst wall, and lacked cyst pores. The cysts of isolate LO were distinct in that the ectocyst was very loose‐fitting, and could contain “crypts”. No flagellate form of isolate LO has been observed to date, and a salinity‐for‐growth experiment showed that isolate LO can grow at 15–100‰ salinity, indicating that it is halotolerant. By contrast, other studied Pharyngomonas isolates are amoeboflagellates and true halophiles. Therefore, we propose isolate LO as a new species, Pharyngomonas turkanaensis n. sp. It is possible that P. turkanaensis descended from halophilic ancestors, and represents a secondary reestablishment of a physiology adapted for moderate salinity.  相似文献   

10.
Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.  相似文献   

11.
The amoeboflagellate transformation in Physarum polycephalum involves a series of dramatic changes in cell shape and motile behavior. This report describes the morphological and behavioral changes through which a synchronously transforming population of cells passes, stressing that, although there are a series of distinguishable stages, cells at all stages display striking plasticity. Our previous studies showed that amoeboflagellates transiently display a flattened motile extension--the ridge--that projects from a specific location on the cell surface and contains a laminar core densely packed with a series of crisscrossing arrays of actin microfilaments. Details are presented here concerning the movements of the ridge as well as the dynamics of ridge formation and disassembly in relation to other morphogenetic events of the transformation. The ridge forms at about the same time as transforming cells begin to elongate, propagates undulations parallel to the long axis of the cell as the transformation proceeds, and disassembles late in the transformation. Staining of fixed cells with the fluorescent probe rhodaminephalloidin shows that the actin of amoeboid cells is strikingly redistributed as the transformation proceeds. Amoeboflagellates contain most of the stainable actin in the ridge and in a ventral-posterior spot that may be a site of cell-substratum adhesion. These results provide additional insights into the possible functions of the ridge and the roles of actin during the amoeboflagellate transformation.  相似文献   

12.
The separation of the germ line from the soma is a classic concept in animal biology, and depending on species is thought to involve fate determination either by maternally localized germ plasm ("preformation" or "maternal inheritance") or by inductive signaling (classically termed "epigenesis" or "zygotic induction"). The latter mechanism is generally considered to operate in non-bilaterian organisms such as cnidarians and sponges, in which germ cell fate is determined at adult stages from multipotent stem cells. We have found in the hydrozoan cnidarian Clytia hemisphaerica that the multipotent "interstitial" cells (i-cells) in larvae and adult medusae, from which germ cells derive, express a set of conserved germ cell markers: Vasa, Nanos1, Piwi and PL10. In situ hybridization analyses unexpectedly revealed maternal mRNAs for all these genes highly concentrated in a germ plasm-like region at the egg animal pole and inherited by the i-cell lineage, strongly suggesting i-cell fate determination by inheritance of animal-localized factors. On the other hand, experimental tests showed that i-cells can form by epigenetic mechanisms in Clytia, since larvae derived from both animal and vegetal blastomeres separated during cleavage stages developed equivalent i-cell populations. Thus Clytia embryos appear to have maternal germ plasm inherited by i-cells but also the potential to form these cells by zygotic induction. Reassessment of available data indicates that maternally localized germ plasm molecular components were plausibly present in the common cnidarian/bilaterian ancestor, but that their role may not have been strictly deterministic.  相似文献   

13.
In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.  相似文献   

14.
用光镜及扫描电镜观察了体外高代培养的含牛焦虫颗粒的牛外周血白细胞的形态及在细胞周期中细胞表面的特征性变化。这种经多年传代的含虫的牛外周血白细胞恢复了分裂和繁殖的能力,目前已成为较稳定的细胞系。细胞表面具多种伪足突起,如叶状、丝状及绒毛状。细胞周期中备期细胞表面的主要特征是:S期:细胞平扁,边缘具薄的时状伪足及丝状伪足;G_2期:细胞中部隆起,表面具少量绒毛状伪足;G_1期:绒毛状结构少或无,而出现丝状及小的叶状伪足,细胞仍保持球形;M期:细胞球形,表面密被以绒毛。作者根据扫描电镜的观察认为光镜下所观察的两类细胞,实际上是反映了一种细胞处于不同发育阶段时的特征。  相似文献   

15.
During epiboly stages the cells (called deep blastomeres) which will form the definitive embryo disperse over the surface of the yolk sphere, only later aggregating and developing an embryonic axis. Five different statistical tests were used to study the pattern formed by the deep blastomeres during epiboly and early dispersed stages. The two most reliable tests, based on the distance from each deep blastomere within a selected area to its nearest neighboring cell, indicate that the distribution pattern changes from regular during epiboly stages to random during dispersed stages 1 and 2. Careful observation and time-lapse microphotography revealed some aspects of how the cells set up the regular pattern. The deep blastomeres exhibit a variety of cell extensions, with which they often contact one another. When two deep blastomeres make contact during epiboly stages, they soon break the contact and move apart; they overlap one another only rarely. Deep blastomeres are frequently located at, and are even elongated along, borders of the overlying flat cells (enveloping layer cells). These two mechanisms, one similar to contact inhibition of cell movement, the other to contact guidance, may contribute to the rather regular spacing of the deep blastomeres as well as to their arrangement in rows during epiboly stages.  相似文献   

16.
Gap junctions (GJs) are composed of membrane proteins that form channels connecting the cytoplasm of adjacent cells and permeable to ions and small molecules. They are considered to be the main or only type of intercellular channels and a universal feature of all multicellular animals (Metazoa). Till recently, sea anemones and corals (Anthozoa, Cnidaria) appeared to be an exception from this rule. There were no structural or physiological data supporting the presence of GJ in Anthozoa. For some time no genes homologous to GJ proteins (connexins or pannexins) were detected in sea anemone Nematostella vectensis (Cnidaria, Anthozoa) or other Anthozoa genomes. Recently, pannexin homolog was found in Nematostella. Our intracellular recordings demonstrate electrical coupling between blastomeres in embryos at the 8-cells stage. At the same time, carboxyfluorescein fluorescent dye did not diffuse between electrically coupled cells, which excludes the possibility that the observed electrical coupling is mediated by incomplete cytoplasm separation during the cleavage. These data support the idea that GJ are ubiquitous for Metazoa, and pannexins are universal GJ proteins.  相似文献   

17.
In the seminal vesicle of male Panagrellus redivivus the sperm are normally rounded, non-motile and have cytoplasmic organelles randomly scattered throughout the whole cell body. Sperm become amoeboid in the uterus of the female with a clear anterior region capable of producing pseudopodia and an arch-shaped rigid posterior region containing numerous organelles. The sperm arrange themselves in the form of a chain in the uterus attaching themselves anterio-posteriorly, however sperm entering the post-vulvar uterine sac do not form a chain and remain scattered. Approximately eight hours after insemination the sperm in the uterus stop producing pseudopodia. Pseudopodial formation recommences in the seven to eight anteriormost sperm in the chain as they reach seminal receptacle.  相似文献   

18.
Ctenophores are biradially symmetrical animals. The body is composed of four identical quadrants which are organized along an oral-aboral axis. Most species have eight comb rows, two tentacles, and an apical organ (located on the aboral surface). During embryogenesis there is a fixed pattern of cleavage, a precocious specification of blastomere developmental potential, and an inability to regulate for portions of the embryo that have been removed. When blastomeres are separated at the two-cell stage each blastomere develops into a "half-animal" with four comb rows, one tentacle, and half an apical organ. In contrast, adult ctenophores regenerate readily. When an adult ctenophore is cut in half to produce "half-animals," in most cases each half regenerates the missing half. In some cases, however, bisected animals remain as "half-animals" which repair the wound site but do not replace all of the missing structures. When animals are cut in half along the tentacular or esophageal axis at different stages of embryogenesis a transition period is detected when the capacity for adult regeneration begins. This transition occurs at the time when the formation of the apical organ is complete and comb row function becomes coordinated. Embryos bisected prior to this time remain as "half-animals" even after growing to large reproductive sizes, while animals bisected after the transition period usually regenerate the missing structures within 2-3 days. When adult "half-animals" (produced by bisection either before or after the transition period) are cut into "quarter-pieces," the pieces regenerate to form either "half-animals" or whole animals. Thus, "half-animals" produced prior to the transition period--although they failed to undergo embryonic regulation--have not irreversibly lost the capacity to form whole animals if challenged to regenerate during adult stages. When aboral blastomeres destined to form the apical organ, tentacles, and comb rows are removed from early cleavage stages (prior to the transition period), the embryo does not form these structures at the appropriate time. However, the resulting deficient adults spontaneously form these structures from remaining blastomere lineages soon after hatching. These experiments suggest that as long as some quadrant-specific cells of the oral pole are present at the time of the transition period, the structures of that quadrant will be spontaneously replaced during the adult period.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
During preimplantation mouse embryo development expression of Cdx2 is induced in outer cells, which are the trophectoderm (TE) precursors. The mechanism of Cdx2 upregulation in these cells remains unclear. However, it has been suggested that the cell position and polarization may play a crucial role in this process. In order to elucidate the role of these two parameters in the formation of TE we analyzed the expression pattern of Cdx2 in the embryos in which either the position of cells and the time of polarization or only the position of cells was experimentally disrupted. Such embryos developed from the blastomeres that were isolated from 8-cell embryos either before or after the compaction, i.e. before or after the cell polarization took place. We found that in the embryos developed from polar blastomeres originated from the 8-cell compacted embryo, the experimentally imposed outer position was not sufficient to induce the Cdx2 in these blastomeres which in the intact embryo would form the inner cells. However, when the polarization at the 8-cell stage was disrupted, the embryos developed from such an unpolarized blastomeres showed the increased number of cells expressing Cdx2. We found that in such experimentally obtained embryos the polarization was delayed until the 16-cell stage. These results suggest that the main factor responsible for upregulation of Cdx2 expression in outer blastomeres, i.e. TE precursors, is their polarity.  相似文献   

20.
Response to heat shock of different sea urchin species   总被引:1,自引:0,他引:1  
It is demonstrated that sea urchin embryos of the species Sphaerechinus granularis are able to respond to heat shock by producing heat shock proteins at the same stage as embryos of Paracentrotus lividus, i.e. after hatching. Arbacia lixula embryos are able to synthesize heat shock proteins already at the stage of 64-128 blastomeres. Embryonic survival is observed if the embryos are heated at the stages at which they can synthesize the heat shock proteins. The inhibition of the bulk protein synthesis after heating at 31 degrees C is never less than 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号