首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of N application on tree growth and the retranslocationof N, P, and K from young needles to new growth were examinedin young radiata pine (Pinus radiata D. Don) trees. Nitrogen fertilization increased the number and size of needles,rates of shoot production, stem volume growth and tree biomass.Foliar N and P contents (µg per needle) fluctuated ina cyclic fashion with prominent phases of accumulation, retranslocationand replenishment. The patterns of these fluctuations in controland N-fertilized trees were similar, although the fluxes ofN, P and K in and out of needles were increased by N fertilization.Greater translocation (g per tree) of N and K from needles ofN fertilized trees occurred because fertilization increasedthe needle weight and the proportion of N and K retranslocatedfrom individual needles. Nitrogen fertilization increased theretranslocation of P largely as a result of higher needle mass.Trees supplied with more than adequate amounts of P in the soilretranslocated up to 58 per cent of the initial pool of P fromyoung needles. The periods of high retranslocation coincidedwith periods of high concentrations of soil mineral N and withshoot production. Conversely, the periods of rapid replenishmentof N and P into the needles coincided with the time of slowshoot growth and low concentration of soil mineral N. The growthrate of trees, rather than the availability of nutrients inthe soil was the main factor controlling retranslocation. For radiata pine, retranslocation from needles is not a mechanismspecific for coping with low soil fertility. It seems to bea mechanism which enhances the nutrient supply to apical growingpoints, especially during periods of flushing. Pinus radiata, nitrogen supply, shoot growth, nutrient fluctuations and retranslocation, nutrient use and adaptation  相似文献   

2.
Summary Changes in needle nitrogen and resin acid concentrations in young Scots pine trees fertilized with ammonium nitrate were followed over 3 years. Sawfly larvae (Neodiprion sertifer) were reared on fertilized and control trees the year after fertilization. Both nitrogen and resin acid concentrations increased in fertilized trees. The fact that resin acid concentrations increased contradicts predictions of the carbon/nutrient balance hypothesis. We suggest that needle resin-acid concentrations are limited more by the size of the resin ducts than by the availability of substrate for resin acid synthesis, and that the formation of resin ducts is limited by the availability of nitrogen. A modification of the carbon/nutrient balance hypothesis, relating compartment formation to allelochemical synthesis, is discussed. Performance of sawfly larvae was not affected by fertilization treatment, probably because concentrations of nitrogen (positively affecting performance) and resin acids (adversely affecting performance) increased simultaneously in fertilized trees. Thus, the results of this study do not support the notion that fertilization increases the resistance of trees to needle-eating insects.  相似文献   

3.
Torgny Näsholm 《Oecologia》1994,99(3-4):290-296
The concentrations of arginine, protein and total nitrogen (N) and the abundance of15N were measured in 3-and 4-year-old needles of Scots pine trees fertilized with either 0 (C), 36 (N1) or 73 (N2) kg N ha-1 year-1 annually for 22 years (average doses of N). Remaining green needles and needles that were shed were compared and removal of N from total, protein and arginine pools was calculated. Earlier investigations had shown that high arginine concentrations are found in needles of trees that have an excessive N supply (Näsholm and Ericsson 1990). This study aimed to elucidate the fate of the accumulated arginine during needle senescence. It was speculated that a low removal of arginine during senescence would implicate that the primary function of arginine is in N detoxification and not in N storage. Moreover, litter quality would be altered if needles are shed with high concentrations of arginine and this might affect the turnover of N in forest ecosystems. In remaining green needles, the concentration of total N increased with increasing N supply. Protein N concentrations were higher in fertilized trees, but did not differ between the two N treatments. Arginine N was low in C and N1 trees but high in N2 trees. Senescent needles from C and N1 trees had about equal total N concentrations while in N2 trees this concentration was significantly higher. Protein N in senescent needles did not differ between treatments. Arginine N, however, was less than 0.1 mg g–1 dw in C and N1 trees but was higher than 1.5 mg g–1 dw in N2 trees. Removal of N was highest in N1 trees followed by C trees while N2 trees removed least N from senescing needles. The high concentration of total N in senescent needles from N2 trees was to a great extent explained by a high arginine concentration.The 15N value of remaining, green needles was higher (less negative) in N2 trees than in C and N1 trees. The same pattern was found for senescent needles. Comparisons of 15N values between remaining, green and senescent needles within each treatment showed a significant increase in 15N for all treatments during senescence possibly indicating losses of N as NH3 (g) from needles during senescence. It is concluded that arginine, accumulated in response to high N supply, is retranslocated only to a small extent during needle senescence. The ecological and physiological implications of this finding are discussed.  相似文献   

4.
Does nitrogen availability control rates of litter decomposition in forests?   总被引:14,自引:1,他引:13  
Prescott  C. E. 《Plant and Soil》1995,168(1):83-88
The effects of increased exogenous N availability on rates of litter decomposition were assessed in several field fertilization trials. In a jack pine (Pinus banksiana Lamb.) forest, needle litter decomposed at the same rate in control plots and in plots fertilized with urea and ammonium nitrate (1350 kg N ha-1) with or without P and K. Mixed needle litter of western hemlock (Tsuga heterophylla (Raf.) Sarg.), western red cedar (Thuja plicata Donn) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) incubated in plots recently amended with sewage sludge (500 kg N ha-1) lost less weight during 3 years than did litter in control plots. Forest floor material also decomposed more slowly in plots amended with sewage sludge. Paper birch (Betula papyrifera Marsh.) leaf litter placed on sewage sludge (1000 kg N ha-1), pulp sludge, or sewage-pulp sludge mixtures decomposed at the same rate as leaf litter in control plots. These experiments demonstrate little effect of exogenous N availability on rates of litter decomposition.The influence of endogenous N availability on rates of litter decomposition was examined in a microcosm experiment. Lodgepole pine (Pinus contorta var. latifolia Engelm.) needle litter collected from N-fertilized trees (525 kg N ha-1 in ammonium nitrate) were 5 times richer in N than needles from control trees (1.56% N versus 0.33% N in control trees), but decomposed at the same rate. Green needles from fertilized trees contained twice as much N as needles from control trees (1.91% N versus 0.88% N), but decomposed at the same rate. These experiments suggest that N availability alone, either exogenous or endogenous, does not control rates of litter decomposition. Increased N availability, through fertilization or deposition, in the absence of changes in vegetation composition, will not alter rates of litter decomposition in forests.  相似文献   

5.
Summary This study evaluated the utility of free arginine concentrations as a possible alternative to mineral nutrient concentrations as an indicator of mineral nutrient imbalances in Norway spruce [Picea abies (L.) Karst.]. The concentrations of mineral nutrients and arginine were measured in the needles of spruce trees from two areas in Sweden, one with high (15–30 kg ha–1 year–1) airborne N deposition, and one with lower (1–4 kg ha–1 year–1) deposition. The spruce needles from the area with high deposition in southern Sweden had elevated concentrations of free arginine, especially on peat sites. No increase in concentrations was found in the low deposition area in northern Sweden. The arginine concentrations on different sampling occasions were consistent for each site and for individual trees. Trees on peat sites in the south seemed to suffer from P deficiency in relation to N availability. A tendency for K deficiency in needles from peat sites was also found. Needles from trees on mor plots showed acceptable levels of these nutrient elements. Sites in the northern area showed low N concentrations, but the ratios between the different mineral elements analyzed in this study and N were within ranges normally found. A low P/N ratio correlated to high free arginine concentration. The threshold for elevated arginine concentrations is crossed when P/N ratios drop below 0.07–0.08. A tendency for increased arginine levels when ratios between N and the other mineral elements are low was also found, although it was not as strong as that for the P/N ratio. The results are discussed in relation to mineral nutrient imbalances in spruce stands caused by airborne deposition.  相似文献   

6.
The pattern of needle growth and the movement of mineral nutrients(nitrogen, phosphorus, potassium and calcium) in needles ofradiata pine (Pinus radiata D. Don) were studied from needleinitiation to 2 years of age. During this period, very prominentcyclic patterns of nutrient accumulation, retranslocation andreplenishment were observed for nitrogen, phosphorus and potassium,which highlighted the potential role of needles as a nutrientreserve for growth. Significant retranslocation occurred from very young needlesabout 3 months after initiation. The phases of retranslocationcoincided with new flushes of shoot growth, and the growth ofnew shoots on a branch resulted in nutrient withdrawal frompre-existing needles, regardless of needle age and season. Suchwithdrawal occurred even in fertilized and irrigated trees onhigh quality sites and under environmental conditions conducivefor nutrient uptake. At all times, except for the short periodafter initiation when needles were actively growing, the nutrientsin the needle were readily available for retranslocation. Contraryto the general view, retranslocation of nutrients was not necessarilyrelated to senescence and ageing of needles. Because new shoots are the primary ‘sinks’ for retranslocatednutrients, an ongoing competition between different parts ofa branch for internal nutrients can be envisaged, preferencebeing for the youngest shoot in the hierarchy. The relevanceof these results to our understanding of ‘optimum nutrition’of pine trees is discussed. Pinus radiata D. Don, radiata pine, mineral nutrition, retranslocation, phosphorus, nitrogen, shoot growth  相似文献   

7.
The nutrient cycling and foliar status for the elements Ca, Mg, K, N, P, S, Fe, Mn, Zn and Cu were investigated in an urban forest of Aleppo pine (Pinus halepensis) in 2004 in Athens, Greece in order to draw conclusions on the productivity status and health of the ecosystem. The fluxes of bulk and throughfall deposition were characterized by the high amounts of Ca, organic N and sulfate S. The magnitude of the sulfate S fluxes indicated a polluted atmosphere. The nutrient enrichment in throughfall was appreciable for ammonium N, P and Mn. The mineral soil formed the largest pool for all the elements followed by the forest floor, trunk wood and trunk bark. The understory vegetation consisting of annual plants proved important for storing N, P and K. Compared to current year needles of Aleppo pine in remote forests of Spain, the needles of the Aleppo pine trees in Athens had significantly higher concentrations of Ca, N, P and Cu and significantly lower concentrations of Mg and Zn. The soil had a high concentration of calcium carbonate and accordingly high pH values. When all inputs to the forest floor were taken into account, the mean residence time of nutrients in the forest floor followed the order Fe > Mn > Cu > Ca > Mg > P > Zn > N > K > S.  相似文献   

8.
The growth, accumulation and movement of mineral nutrients (nitrogen,phosphorus, potassium (calcium) and chlorophyll in needles ofyoung radiata pine trees (Pinus radiata D. Don) were examined,from bud break in spring through the following year. Retranslocationof nutrients from needles was measured and is discussed in relationto nutrient requirements for seasonal growth. During the first 4–5 months after bud break when mostneedle growth occurred, all nutrients and chlorophyll accumulatedprogressively, although the concentrations of nitrogen, phosphorusand potassium decreased. During summer, substantial amounts of phosphorus were withdrawnfrom needles less than 6 months old, regardless of positionon the tree and silvicultural practice. In young needles andunder certain environmental conditions, this led to a markedtemporary decline in concentrations, even in fertilized treeson a fertile site. However, the phosphorus content of needleswas quickly restored following autumn rains. Similar fluctuations,including nutrient withdrawal in summer, occurred for nitrogenand potassium, but these were smaller than those observed forphosphorus. Phosphorus was also withdrawn from relatively olderneedles during summer. It was estimated that on a tree basis 86, 48 and 39 per centof the phosphorus, nitrogen and potassium, respectively, insummer shoots could have come from the retranslocation of nutrientsfrom young needles formed during the preceding spring. These results highlight the importance of nutrients stored inneedles to meet the nutrient requirements for growth when environmentalfactors may not be conducive to nutrient uptake from the soil. Pinus radiata D. Don, mineral nutrition, retranslocation, phosphorus, nitrogen, seasonal effects, pine needle growth  相似文献   

9.
Rhizosphere, fine-root and needle chemistry were investigated in a 28 year old Norway spruce stand in SW Sweden. The uptake and allocation pattern of plant nutrients and aluminium in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatments started in 1988. Current year needles, one-year-old needles and cylindrical core samples of the LFH-layer and the mineral soil layers were sampled in 1988, 1989 and 1990. Compared to the control plots, pH decreased significantly in the rhizosphere soil in the NS plots in 1989 and 1990 while the SO4-S concentration increased significantly. Aluminium concentration in the rhizosphere soil was generally higher in the NS plots in all soil layers, except at 0–10 cm depths, both in 1989 and 1990. Calcium, Mg and K concentrations also increased after treatment with ammonium sulphate. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment significantly reduced Mg concentrations in fine roots in all layers in 1990. A similar trend was found in the needles. Ca concentrations in fine roots were significantly lower in the NS plots in the LFH layer in 1990 and the same pattern was found in the current needles. The N and S concentrations of both fine roots and needles were significantly higher in the NS plots. It was suggested that NS treatment resulted in displacement of Mg, Ca and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.  相似文献   

10.
Nitrogen metabolism of the needles of 40-year-old Douglas fir and Scots pine trees, growing in two forest stands on cation-poor and acidic sandy soil with a relatively high atmospheric nitrogen deposition was studied. The composition of the free amino acid (FAA) pool, the concentrations of total nitrogen and soluble protein and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were determined in the needles. An excessive nitrogen supply by a high atmospheric nitrogen deposition in both forest stands was indicated by the high concentrations of total nitrogen and the amino acids arginine, glutamic acid, glutamine and aspartic acid in control trees. In addition the effect of optimal nutrition and water supply (fertigation) on the needle nitrogen metabolism was evaluated. The total concentration of the FAA pool in needles of both tree species was lower in the fertigated than in the non-fertigated (control) trees, except for 1-year-old needles of Scots pine, in which the concentration after fertigation did not differ from the control. The lower total FAA concentration in the fertigated trees could be attributed to arginine, the concentration of which was on average 60% lower than in the control. Neither the concentration of soluble protein nor the activity of GS were influenced by fertigation. The activity of GDH in fertigated trees only differed significantly from the control in October. Scots pine needles had higher concentrations of protein (50%) and higher activities of GS (44%) and GDH (25%) than Douglas fir needles. Possible explanations for the lower vitality of Douglas fir compared to Scots pine are given.  相似文献   

11.
The capacity of Mediterranean species to adapt to variable nutrient supply levels in a global change context can be a key factor to predict their future capacity to compete and survive in this new scenario. We aimed to investigate the capacity of a typical Mediterranean tree species, Pinus halepensis, to respond to sudden changes in N and P supply in different environmental conditions. We conducted a fertilisation, irrigation and removal of competing vegetation experiment in a calcareous post-fire shrubland with an homogeneous young (5 years old) population of P. halepensis in order to investigate the retranslocation and nutrient status for the principal nutrients (N, P, Mg, K, S, Ca and Fe), and the nutrient use efficiency (NUE) of the most important nutrients linked to photosynthetic capacity (N, P, Mg and K). P fertilisation increased P concentration in needles, P, N, Mg and K retranslocations, and NUE calculated as biomass production per unit of nutrient lost in the litterfall. The P fertilisation was able to increase the aboveground biomasses and P concentration 3 years after P fertiliser application. Those responses to P fertilisation were enhanced by the removal of competing vegetation. The N needle and litterfall concentration decreased after P fertilisation and this effect was greater when the P fertilisation was accompanied by removal of competing vegetation. The increase of P availability decreased the P-NUE and increased the N-NUE when these variables were calculated as aboveground biomass production per unit of P present in the biomass. Both P-NUE and N-NUE increased when calculated as total aboveground production per unit of nutrient loss. The results show that it is necessary to calculate NUE on a different basis to have a wider understanding of nutrient use. The irrigation did not change the needle nutrient concentrations and the litterfall production, but it significantly changed the nutrient litterfall concentrations and total aboveground contents (especially P and K). These results show a high capacity of P. halepensis to quickly respond to a limiting nutrient such as P in the critical phases of post-fire regeneration. The increase in P availability had a positive effect on growth and P concentrations and contents in aboveground biomass, thus increasing the capacity of growth in future periods and avoiding immediate runoff losses and leachate. This capacity also strongly depends on neighbour competition.  相似文献   

12.
In this study, we surveyed the long term effects of liming and fertilizing in old Scots pine stands on the ectomycorrhiza (ECM) colonization, tree growth and needle nutrient concentration 35 years later. Four mature stands of Scots pine on low productive mineral soil were limed in 1959 and 1964 with total doses of limestone ranging from 3 to 15 Mg ha?1 and fertilized with nitrogen (N) in 1970. Thirty-five years after the first liming treatment, all stands were analysed for tree growth and needle nutrient concentrations and two of the stands were also analysed for ECM colonization. ECM colonization increased significantly with liming from 61.5% in the control plots to 88% in the plot with the highest limestone dose. ECM colonization increased with increasing pH in the humus layer from 62% colonization at pH?=?3.5 to 90% at pH?=?6.5 and decreased with increasing amount of extractable phosphorus (P) in the humus. Liming did not affect the frequencies of different ECM morphotypes or dead short root tips, the fine root biomass or necromass. ECM colonization was uncorrelated with needle nutrient concentrations or tree increment. Liming did not significantly affect tree growth. However, nutrient concentrations of current-year needles were affected by prior liming. Ca concentrations in current-year needles increased from approximately 15 mg g?1 in control treatments to more than 30 mg g?1 in limed plots, whereas concentrations of Mn, Al, Fe, and in two stands, B, decreased due to liming. In conclusion, liming with doses up to 15 Mg ha?1 was detectable in stands 35 years after treatment. The liming significantly increased the ECM colonization of Scots pine fine roots, increased the needle nutrient concentration of Ca and decreased the needle concentrations of Mn, Al, and Fe.  相似文献   

13.
De Visser  P. H. B. 《Plant and Soil》1995,168(1):353-363
The effects on growth and nutrient status of an increased availability of all major nutrients was studied in a 40 year old Douglas fir stand. The nutrient amounts were applied by daily sprinkling and were in fixed, optimal proportions to the estimated annual uptake of N. Irrigation was included to avoid drought stress. The nutrient applications were also done in combination with a lower NH4 load, realized under a roof that was placed above the ground. According to nutritional standards nitrogen supply was optimal and was related to the moderately high atmospheric N inputs. Nutrition of P, K and in some years Ca seemed critical.In all four studied growing seasons water additions resulted in a growth increase, of 30 to 40%. Irrigation decreased needle fall. Nutrient applications increased the needle concentrations of P and K considerably, but this did not result in a growth enhancement. Fertilization also increased K and P in shedded needles. Only minor leaching losses were calculated. The recovery in trees of fertilizer K and P was maximally 15%. Input-output budgets suggested that P was strongly retained in the soil. The decrease in NH4 load had slightly decreased N availability and soil acidification, and seemed to enhance tree growth. The use of tree growth as a parameter to evaluate the effects of an improved nutritional balance is discussed.  相似文献   

14.
The effects of aluminium chloride (AICI3) treatments (50 and 150 mg/l) on 3-year-old Scots pine (Pinus sylvestris L.) seedlings were studied in a sand culture during 2 growing periods in an open field experiment. Even by the end of the first growing period, a decline was observed in the concentrations of Ca, Mg and P within the needles, and of Ca and Mg in the roots. After the second growing period, increased N and K concentrations were observed in the needles of Al-treated seedlings. Both the needles and roots of Al-treated seedlings showed, after the second growing period, a decline in growth and increased concentrations of AI as the amount of AICI3 in the nutrient solution increased. Al-induced changes in needle structure were found to be symptomatic of a nutrient imbalance, particularly of Mg and P. Al-stress did not result in any observable changes in root anatomy or in the number of mycorrhizas. Scots pine proved to be rather resistant to Al-stress, indicating that direct Al-injuries are not likely in the field, though Al-stress may be a contributing factor in the formation of nutrient imbalances.  相似文献   

15.
 The nutrient concentrations and contents of needles and shoots of 22-year-old European larch (Larix decidua Mill.) were evaluated with respect to crown position, age of tissues and sampling date during a complete growing season. Concentrations of N, P, K, Ca, Mg and Zn in the needles and of N, P and K in the shoots differed significantly among the dates of sampling. The concentrations of N and Mn in the needles and all nutrients in the shoots (except Mg) also differed significantly with crown position. Maximum needle biomass was observed in the middle crown position (55% of the total) and maximum shoot biomass, in the lower crown position (52% of the total). Maximum needle and shoot nutrient contents were observed in the middle position of the living crown for long shoot, short shoot-1, short shoot-2, short shoot-3 and, short shoot-4 age classes while highest contents for short shoot-5 and short shoot-6 age classes were observed in the lower crown position. Biases up to 42% for Mg in the needles and 200% for K in the shoots were obtained when only long shoot tissues are used for content evaluation. For needles and shoots, Mg and K are more difficult nutrients to evaluate. A sampling methodology is proposed for evaluating nutrient contents of the living crown. Accepted: 10 August 1995  相似文献   

16.
C. C. Hole  A. Scaife 《Plant and Soil》1993,150(1):147-156
Critical plant concentrations for a reduction in relative growth rate to 90% of that of fully nourished plants were estimated by a novel method for several mineral nutrients. Carrot plants were grown from seed for 28 days in a range of nutrient solutions omitting N, P, K, Ca, S, Mg, Fe, B, Mn, Zn, Cu and Mo as separate treatments. All treatments except -Mn, -Zn, -Cu and -Mo resulted in effects on plant growth and the development of deficiency symptoms. Estimates of critical concentrations were based on a simple simulation model incorporating the principle of nutrient dilution with increasing plant weight and on mineral analysis of the plants. Parameters governing the shape of the relationship between fractional relative growth rate and plant nutrient concentration were altered until the model predicted the observed final mean dry weight of deficient plants and time of divergence of this growth curve from that of fully nourished plants. Critical concentrations so obtained were higher than those previously reported for Ca, Fe, N and P in carrots and lower for K, Mg and S.  相似文献   

17.
Xylem sap composition of spruce is influenced by several factors, such as the sampled organ, the sampling period, the availability of soil nutrients, and the soil water potential. Based on literature data and ongoing investigations carried out with adult trees, we present an overview on the main factors influencing xylem sap concentrations of Norway spruce. Direct measurements of nutrient fluxes in the xylem sap are then used to suggest a general scheme of mineral element cycling within adult trees. In Norway spruce (Picea abies Karst.), nutrient concentration in the xylem sap was higher in twigs and fine roots compared to the bottom of the trunk, the highest concentrations beeing observed in spring during the shoot elongation. Xylem sap concentrations were higher in spruce growing at nutrient rich sites than at poor sites. The combination of twig and trunk xylem sap analysis, together with xylem flow measurements in the trunk during the course of a vegetation period allowed the quantification of mineral fluxes via xylem sap flow in the trunk and twigs. These results were compared to gross mineral uptake measurements at the same site. Ca flux in the trunk xylem sap was lower than the gross uptake of Ca. Mg flux in trunk sap was approximately equivalent to Mg gross uptake whereas P and K fluxes in trunk sap were much higher than the gross uptake. Fluxes of Ca, Mg, K and P in the twig sap were much higher than that in trunk sap. Data suggest that internal cycling is responsible for a large part of the nutrient fluxes in the xylem sap of the crown. Xylem sap composition thus appears to be a tool which can complement other sources of information on mineral uptake and cycling in adult spruce  相似文献   

18.
Summary Monoterpenes in needles of Picea abies (L.) Karst. were studied to reveal whether or not the symptoms of forest decline observed in three mountain regions of South Germany (Bavaria) — needle loss and needle yellowing — are related to changes in the amounts of all or individual terpenes. The nutrient supply of the needles was examined in addition to the terpene concentrations, since the disease symptom montane yellowing is often associated with mineral deficiency. At two of the eight locations, trees exhibited Mg-deficiency, at one location K-deficiency was observed, and at another location the S-content of the needles indicated SO2-pollution. Using various statistical methods of analysis, no correlation was observed between the mineral element content of the needles, the percentage of needle loss and either the absolute or percentile terpene amounts stored within the needles. This finding is independent of needle age, date of sampling and terpene pattern. Concerning needle yellowing, the data show a tendency towards a reduction of the terpene concentrations in needles originating from branches with partly yellow needles compared to needles from exclusively green-needled branches. In spite of the fact that only 2-year-old and older needles show the disease symptom of yellowing, the terpene level is reduced even in still green, juvenile and 1-year-old needles. No terpene was found to be an indicator for early recognition of injury.  相似文献   

19.
Raitio  Hannu  Sarjala  Tytti 《Plant and Soil》2000,221(2):231-238
Free amino acid (16 amino acids) and chemical composition (N, P, K, Mg, Ca, S, Fe, Mn, Cu, Zn) of Scots pine (Pinus sylvestris L.) needles were compared between six provenances in three different experimental areas. The main free amino acids in the needles were in the sequence of quantity; glutamic acid, glutamine, arginine and γ-aminobutyric acid. There were no significant differences in the concentrations of phenylalanine, γ-aminobutyric acid, methionine, proline and threonine in pine needles between the sites or between the provenances. Significant differences in the foliar concentrations of alanine and leucine were found between the sites and in the foliar concentrations of isoleucine, glutamine, glycine and tyrosine between the provenances. The concentrations of aspartic acid, glutamic acid, arginine and lysine were significantly affected by the sites and the provenances. The foliar nutrients, except copper, had statistically significant differences, both between the sites and between the provenances. Calcium did not differ between the provenances. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
During a seven-month period the effect of different nitrogen (N) availability in soil on growth and nutrient uptake was studied in three-year-old Norway spruce (Picea abies [L.] Karst.) trees. The plants were grown in pots on N-poor forest soil supplied with various amounts and forms (inorganic and organic) of N. Increasing supply of inorganic N (as NH4NO3) increased the formation of new shoots and shoot dry weight. The root/shoot dry weight ratio of new growth was drastically decreased from 1.6 in plants without N supply to 0.5 in plants supplied with high levels of NH4NO3. This decrease in root/shoot dry weight ratio was associated with distinct changes in root morphology in favour of shorter and thicker roots. The addition of keratin as organic N source did neither affect growth nor root morphology of the trees. The amount of N taken up by plants was closely related to the supply of inorganic N, and trees supplied with highest levels of NH4NO3 also had the highest N contents in the dry matter of needles and roots. In contrast, N contents in needles of trees grown without additional N, or with keratin supply, were in the deficiency range. Supply of NH4NO3 decreased the contents of phosphate (P) and potassium (K) and therefore markedly increased N/P and N/K ratios in the needles. On the other hand, the contents of calcium (Ca), magnesium (Mg), and manganese (Mn) in the needles were increased in the plants supplied with inorganic N, suggesting high soil availability and promotion of uptake of these divalent cations by high nitrate uptake. The observed effects on root/shoot dry weight ratio, root morphology, and mineral nutrient composition of the needles indicated that high inorganic N supply may increase above-ground productivity but at the same time decrease the tolerance of trees against soil-borne (e.g. deficiency of other mineral nutrients) stress factors. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号