首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Innate immune detection and subsequent immune responses rely on the initial recognition of pathogen specific molecular motifs. Foreign nucleic acids are key structures recognised by the immune system, recognition of which occurs mainly through the use of nucleic acid receptors including members of the Toll-like receptors, AIM2-like receptors, RIG-I-like receptors and intracellular DNA receptors. While the immune system is critically important in protecting the host from infection, it is of utmost importance that it is tightly regulated, in order to prevent recognition of self-nucleic acids and the subsequent development of autoimmunity. Defects in the mechanisms regulating such pathways, for example mutations in endonucleases that clear DNA, altered expression of nucleic acid sensors and defects in negative regulators of these signalling pathways involved in RNA/DNA sensing, have all been implicated in promoting the generation of autoimmune responses. This evidence, as reviewed here, suggests that novel therapeutics targeting these sensors and their downstream pathways may be of use in the treatment of patients with autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and primary Sjögren's syndrome.  相似文献   

3.
The unravelling of gene structures of hormones, their receptors and the various components of their signal transduction apparatus has enabled diagnosis of the aetiology of hormone resistance at the molecular level. Inactivating mutations can be found in hormone receptor genes or those encoding components of the post-receptor signal transduction cascade. Another category of receptor mutation is that causing constitutive receptor activation, which results in ligand-independent, inappropriate or supraphysiological hormone action and in some cases malignant growth. The purpose of this contribution is to review the different types of inactivation and activation mechanisms that are induced by receptor mutations, using some of the best characterised mutations as examples. In addition, the currently known mutations of hormone receptors are briefly summarised.  相似文献   

4.
Notch signaling is involved in the development of almost all organ systems and is required post-developmentally to modulate tissue homeostasis. Rare variants in Notch signaling pathway genes are found in patients with rare Mendelian disorders, while unique or recurrent somatic mutations in a similar set of genes are identified in cancer. The human genome contains four genes that encode Notch receptors, NOTCH1-4, all of which are linked to genetic diseases and cancer. Although some mutations have been classified as clear loss- or gain-of-function alleles based on cellular or rodent based assay systems, the functional consequence of many variants/mutations in human Notch receptors remain unknown. In this review, I will first provide an overview of the domain structure of Notch receptors and discuss how each module is known to regulate Notch signaling activity in vivo using the Drosophila Notch receptor as an example. Next, I will introduce some interesting mutant alleles that have been isolated in the fly Notch gene over the past > 100 years of research and discuss how studies of these mutations have facilitated the understanding of Notch biology. By identifying unique alleles of the fly Notch gene through forward genetic screens, mapping their molecular lesions and characterizing their phenotypes in depth, one can begin to unravel new mechanistic insights into how different domains of Notch fine-tune signaling output. Such information can be useful in deciphering the functional consequences of rare variants/mutations in human Notch receptors, which in turn can influence disease management and therapy.  相似文献   

5.
Estrogen resistance and aromatase deficiency in humans   总被引:1,自引:0,他引:1  
The primordial role of estrogens in female reproductive function is well known. The recent production of transgenic mice deficient in estrogen receptors (ERKO) or in aromatase (ArKO) and the discovery in man of inactivating mutations of the corresponding genes (ER) have contributed to the understanding of the role of estrogens in metabolic processes in female as well as male. To date 8 well documented cases (5 women and 3 men) of congenital deficiencies in estrogens have been reported. As mice deficient in ERa had been previously described, these cases definitely proved that estrogen absence was compatible with survival and disproved the "lethality concept" previously held because the role of estrogens in implantation and gestation maintenance. ERKO mice are phenotypically normal though sterile, but their bone density is lower (20-25%) than that of controls. Similarly, men with no aromatase or no ER display continuous growth, osteoporosis and also (but not necessarily) alterations in testicular functions. How much do primordial functions such as bone development, control of gonadotrophin secretion and lipid metabolism depend on estrogens? These interrogations, elegantly clarified following testosterone and estradiol treatment in an aromatase deficient man are considered in this present synthesis.  相似文献   

6.
Human placental villus tissue contains opioid receptors and peptides. Kappa opioid receptors (the only type present in this tissue) were purified with retention of their binding properties. The purified kappa receptor is a glycoprotein with an apparent molecular weight of 63,000. Two opioid receptor mediated functions were identified in trophoblast tissue, namely regulation of acetylcholine and hormonal (human chorionic gonadotrophin and human placental lactogen) release. Placental content of kappa receptors increases with gestational age. Term placental content of kappa receptors correlates with route of delivery (higher in those abdominally obtained). Opioid use and/or abuse during pregnancy affects placental receptor content at delivery, as well as its mediated functions. Opioid peptides identified in placental extracts were beta-endorphin, methionine enkephalin, leucine enkephalin and dynorphins 1-8 and 1-13. Dynorphin 1-8 seem to be the predominant opioid peptide present in placental villus tissue.  相似文献   

7.
A number of mutations are known to disturb the development and function of the hypothalamic-pituitary-gonadal axis. They affect hypothalamic-pituitary-gonadal function at multiple levels, from the migration of gonadotropin releasing hormone neurons to the hypothalamus right through to gonadotropin action in the ovary and testis. Most of the mutations are inactivating, causing various forms of hypogonadism. Exceptions are the activating mutations of the luteinizing hormone receptor, causing male-limited gonadotropin-independent precocious puberty. The human mutations and genetically modified animal models have clarified the molecular pathogenesis of hypogonadism and such disorders can now be diagnosed using molecular biological techniques, enabling selection of specific treatments and appropriate counselling of patients and their families.  相似文献   

8.
9.
Breast cancer is the most common malignancy among females in the world. In Iran, age and family history are the major risk factors for the development of this disease. Mutations of BRCA1 and BRCA2 genes are associated with a greatly increased risk for familial breast cancer. The frequency of BRCA mutations was identified in familial breast cancers (FBCs) and nonfamilial breast cancers (NFBCs) by molecular genetics, and morphological and immunohistochemical methods. Thirty-four formalin-fixed, paraffin-embedded breast tissue tumors were analyzed from 16 patients with FBCs and 18 patients with NFBCs. Three 5382insC mutations were detected by multiplex PCR in 16 FBCs. The immunohistochemical method was used to detect estrogen receptors (ER), progesterona receptors (PR), and TP53. Comparison of ER, PR, and TP53 exhibited a high difference (P < 0.0001) in FBCs and NFBCs. Our results demonstrated that 5382insC mutation, ER, PR, TP53, mitotic activity, polymorphism, necrosis and tubules can serve as the major risk factors for FBC. The text was submitted by the authors in English.  相似文献   

10.
The BMP signaling and in vivo bone formation   总被引:12,自引:0,他引:12  
Cao X  Chen D 《Gene》2005,357(1):1-8
Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the transforming growth factor beta (TGFbeta) superfamily. The roles of BMPs in embryonic development and cellular functions in postnatal and adult animals have been extensively studied in recent years. Signal transduction studies have revealed that Smads 1, 5 and 8 are the immediate downstream molecules of BMP receptors and play a central role in BMP signal transduction. Studies from transgenic and knockout mice and from animals and humans with naturally occurring mutations in BMPs and their signaling molecules have shown that BMP signaling plays critical roles in bone and cartilage development and postnatal bone formation. BMP activities are regulated at different molecular levels. Tissue-specific knockout of a specific BMP ligand, a subtype of BMP receptors or a specific signaling molecule is required to further determine the specific role of a BMP ligand, receptor or signaling molecule in a particular tissue.  相似文献   

11.
Pattern-recognition receptors, such as Toll-like receptors and NOD-like receptors (NLRs), are able through the recognition of pathogen-associated molecular patterns and danger-associated molecular patterns to sense microbe-dependent and microbe-independent danger and thereby initiate innate immune responses. In some autoinflammatory conditions, abnormalities in NLR signaling pathways are involved in pathogenesis, as exemplified by NOD2 mutations associated with Crohn's disease. Some other NLRs are components of the inflammasome, a caspase-1- and prointerleukin-1beta-activating complex. Clinical and experimental studies are beginning to reveal the central role of the inflammasome in innate immunity. Here, we focus on monogenic hereditary inflammatory diseases, such as Muckle-Wells syndrome, which are associated with mutations in proteins that modulate the activity of the inflammasome, and on some multifactorial disorders, such as Type 2 diabetes and hypertension.  相似文献   

12.
13.
Injection of immature male rats with human chorionic gonadotrophin resulted in a decreased ability of the testis to bind [125I]-labelled human chorionic gonadotrophin in vitro, and a marked, but transient increase in testis weight; the latter was apparently due to the accumulation of fluid containing high levels of testosterone. Intra-testicular injection of cycloheximide significantly inhibited all these changes, thus demonstrating their dependence on protein synthesis. It is concluded from this and other data that either testosterone itself or a steroidogenic protein intermediary may be responsible for the gonadotrophin-induced reduction in availability of gonadotrophin receptors.  相似文献   

14.
As measured by radioreceptor assays, binding sites for FSH and prolactin were present at 09:00 h on the day of pro-oestrus in Stage 1-10 follicles (primary to antral) with prolactin receptors 3-6 times higher than FSH sites in Stages 1-3 (3 layers of granulosa cells). Specific binding sites for hCG were present in Stage 1 and 2 follicles (2 layers of granulosa cells) but thereafter their distribution was erratic and they were not consistently detectable until Stage 5, when thecal cells first appeared. Using topical autoradiography, specific binding for FSH was evident in Stage 1-4 follicles (4 layers granulosa cells) whereas specific hCG-binding was not. After the preovulatory gonadotrophin surges, by 21:00 h on pro-oestrus, FSH receptors declined in Stages 5-10, prolactin receptors fell in Stages 8 and 10 (small and large antral follicles) and hCG receptors were reduced in Stages 7 (start of antral cavity) to 10. On the morning of oestrus, for follicles from Stage 4 onwards, receptor numbers usually returned to levels found at 09:00 h on pro-oestrus. At oestrus, the few remaining Stage 10 follicles were all atretic and contained significantly reduced FSH and prolactin receptors but numbers of hCG binding sites comparable to those at 09:00 h of pro-oestrus. These results provide evidence of gonadotrophin receptors in small primary and secondary follicles which is consistent with increased DNA synthesis in small hamster follicles on the afternoon of pro-oestrus and on the morning and afternoon of oestrus. Periovulatory changes in gonadotrophin concentrations may therefore affect early stages of folliculogenesis.  相似文献   

15.
The Toll‐like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen‐associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain‐containing proteins. Mutations in the BB loop of the Toll‐like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lpsd mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain‐containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein–protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild‐type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways.  相似文献   

16.
Gastrointestinal stromal tumors: key to diagnosis and choice of therapy   总被引:2,自引:0,他引:2  
The common feature of gastrointestinal stromal tumors (GISTs) is the expression of KIT protein or acquisition of activating, constitutive mutations in the KIT or platelet-derived growth factor receptor alpha (PDGFRA) genes that are the early oncogenic events during GIST development. With these discoveries, GIST has emerged as a distinct sarcoma entity, enabling the introduction of targeted therapy using the inhibition of KIT/PDGFRA and their downstream signaling cascade. The introduction of a small-molecule tyrosine kinase inhibitor, imatinib mesylate, to clinical practice has revolutionized the treatment of patients with advanced GISTs and is currently approved as first-line treatment for patients with metastatic and/or inoperable GISTs. Mutation screening is currently a tool in GIST diagnosis, assessment of sensitivity to tyrosine kinase inhibitors, and prediction of achieving response to molecularly targeted therapy.This article discusses the histologic and molecular criteria for distinguishing GISTs from other types of sarcoma, and the molecular diagnostic tools that are currently available or in development to assist in therapy decisions.  相似文献   

17.
18.
Increasing evidence demonstrates that target‐based agents are active only in molecularly selected populations of patients. Therefore, the identification of predictive biomarkers has become mandatory to improve the clinical development of these novel drugs. Mutations of the epidermal growth factor receptor (EGFR) or rearrangements of the ALK gene in non‐small‐cell lung cancer, and BRAF mutations in melanoma are clear examples of driver mutations and predictive biomarkers of response to treatment with specific inhibitors. Predictive biomarkers might also identify subgroups of patients that are not likely to respond to specific drugs, as shown for KRAS mutations and anti‐EGFR monoclonal antibodies in colorectal carcinoma. The discovery of novel driver molecular alterations and the availability of drugs capable to selectively block such oncogenic mechanisms are leading to a rapid increase in the number of putative biomarkers that need to be assessed in each single patient. In this respect, two different approaches are being developed to introduce a comprehensive molecular characterization in clinical practice: high throughput genotyping platforms, which allow the detection of recognized genetic aberrations in clinical samples, and next generation sequencing that can provide information on all the different types of cancer‐causing alterations. The introduction of these techniques in clinical practice will increase the possibility to identify molecular targets in each individual patient, and will also allow to follow the molecular evolution of the disease during the treatment. By using these approaches, the development of personalized medicine for patients with cancer will finally become possible. J. Cell. Biochem. 114: 514–524, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号