首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The model of simultaneous interrelated modification in the efficacy of synaptic inputs to different neurons of the olivary-cerebellar network is developed. The model is based on the following features of the network: simultaneous activation of the input layer (granule) cells and the output layer (deep cerebellar nuclei) cells by mossy fibers; simultaneous activation of Purkinje cells and cerebellar cells of the input and output layers by climbing fibers and their collaterals; the existence of local feedback excitatory, inhibitory, and disinhibitory circuits. The rise (decrease) of posttetanic Ca2+ concentration in reference to the level produced by previous stimulation causes the decrease (increase) in cGMP-dependent protein kinase G activity, and increase (decrease) inprotein phosphatase 1 activity. Subsequent dephosphorylation (phosphorylation) of ionotropic receptors results in simultaneous LTD (LTP) of the excitatory input together with the LTP (LTD) of the inhibitory input to the same neuron. The character of interrelated modifications of synapses at different cerebellar levels strongly depends on the olivary cell activity. In the presence (absence) of the signal from the inferior olive LTD (LTP) of the output cerebellar signal can be induced.  相似文献   

2.
Silkis I 《Bio Systems》2000,54(3):141-149
The model of three-layer olivary-cerebellar neural network with modifiable excitatory and inhibitory connections between diverse elements is suggested. The same Hebbian modification rules are proposed for Purkinje cells, granule (input) cells, and deep cerebellar nuclei (output) cells. The inverse calcium-dependent modification rules for these cells and hippocampal/neocortical neurones or Golgi cells are conceivably the result of the involvement of cGMP and cAMP in postsynaptic processes. The sign of simultaneous modification of excitatory and inhibitory inputs to a cell is opposite and determined by the variations in pre- and/or postsynaptic cell activity. Modification of excitatory transmission between parallel fibers and Purkinje cells, mossy fibers and granule cells, and mossy fibers and deep cerebellar nuclei cells essentially depends on inhibition effected by stellate/basket cells, Golgi cells and Purkinje cells, respectively. The character of interrelated modifications of diverse synapses in all three layers of the network is influenced by olivary cell activity. In the absence (presence) of a signal from inferior olive, the long-term potentiation (depression) in the efficacy of a synapse between input mossy fiber and output cell can be induced. The results of the suggested model are in accordance with known experimental data.  相似文献   

3.
Selective labeling of mossy fiber terminals and parallel fibers was obtained in rat cerebellar cortex by a glutamate antibody produced and characterized by Hepler et al. The high-resolution electron microscopic immunogold demonstration of this amino acid offered the possibility of determining the size and shape of synaptic vesicles in glutamate-positive mossy endings. Mossy terminals that stained with the glutamate antibody formed two distinct populations, one with spherical synaptic vesicles with an average diameter of 34.0 nm (more than 90% of all mossy fiber endings) and one with pleomorphic and smaller synaptic vesicles which had an average diameter of 28.5 nm. We present experimental evidence that the mossy terminals with large round vesicles are of extracerebellar origin, whereas those with small pleomorphic synaptic vesicles are endings of nucleocortical fibers. The presence of two distinct classes of gamma-aminobutyric acid (GABA)-containing axon terminals within cerebellar glomeruli has also been demonstrated; those originating from the cerebellar nuclei contain large (36.2 nm) synaptic vesicles, whereas the majority of GABA-stained axon terminals that are of local (cortical) origin contain small (29.1 nm) synaptic vesicles. It therefore appears that, at least in the case of glutamate and GABA, morphological characterization of the axon terminals based on the size and shape of synaptic vesicles is not a reliable indicator of their functional nature (i.e., whether they are excitatory or inhibitory); convincing evidence for the identity of the transmitter can be obtained only by electron microscopic immunostaining procedures. Our results also suggest the existence of both inhibitory and excitatory feedback from cerebellar nuclei to cerebellar cortex.  相似文献   

4.
The granular layer is the input layer of the cerebellar cortex. It receives information through mossy fibers, which contact local granular layer interneurons (GLIs) and granular layer output neurons (granule cells). GLIs provide one of the first signal processing stages in the cerebellar cortex by exciting or inhibiting granule cells. Despite the importance of this early processing stage for later cerebellar computations, the responses of GLIs and the functional connections of mossy fibers with GLIs in awake animals are poorly understood. Here, we recorded GLIs and mossy fibers in the macaque ventral-paraflocculus (VPFL) during oculomotor tasks, providing the first full inventory of GLI responses in the VPFL of awake primates. We found that while mossy fiber responses are characterized by a linear monotonic relationship between firing rate and eye position, GLIs show complex response profiles characterized by “eye position fields” and single or double directional tunings. For the majority of GLIs, prominent features of their responses can be explained by assuming that a single GLI receives inputs from mossy fibers with similar or opposite directional preferences, and that these mossy fiber inputs influence GLI discharge through net excitatory or inhibitory pathways. Importantly, GLIs receiving mossy fiber inputs through these putative excitatory and inhibitory pathways show different firing properties, suggesting that they indeed correspond to two distinct classes of interneurons. We propose a new interpretation of the information flow through the cerebellar cortex granular layer, in which mossy fiber input patterns drive the responses of GLIs not only through excitatory but also through net inhibitory pathways, and that excited and inhibited GLIs can be identified based on their responses and their intrinsic properties.  相似文献   

5.
Summary The teleostean cerebellar cortex has been studied with respect to its cytoarchitectonic arrangement and intracortical neuronal circuits. Samples of fish cerebellum were fixed either by immersion or vascular perfusion in 5% glutaraldehyde solution and processed for light and scanning electron microscopy. The cerebellar cortex shows four distinct layers: granular; fibrous stratum; Purkinje cell; and molecular layers. In the granular layer, mossy and climbing fiber glomeruli were characterized. The mossy glomerular region appeared as polygonal, round or ovoid clews formed by the convergence of up to 17 dendritic profiles upon a thick mossy fiber branch. The en passant nature of mossy fiber-granule cell dendrite synaptic relationship was clearly appreciated. The climbing fibers showed tendril and glomerular collaterals. The latter form thin, elongated glomeruli. Remnants of a neuroglial envelope were observed in the mossy fiber glomeruli but are apparently absent from the climbing fiber glomeruli. The beaded-shape Golgi cell axonal ramifications were observed participating in the formation of both glomerular types. Velate protoplasmic astrocytes and oligodendrocytes were also identified. The fibrous stratum appeared to be formed by compact bundles of thick and thin myelinated axons, running horizontally beneath the Purkinje cell layer and apparently belonging to ascending climbing fibers and descending Purkinje cell axons. At the Purkinje cell layer a selective removal of Bergmann glial cells was observed allowing the visualization of the pericellular basket and the pinceaux. Climbing fiber stems and their tendril collaterals were seen on their way to the molecular layer ascending parallel to the Purkinje dendritic ramifications. Stellate neuron processes were found passing through the fan-like arborescence of Purkinje cell dendrites.  相似文献   

6.
The rat olivocerebellar climbing fiber system has been investigated at the light and electron microscopic level with anterograde Phaseolus vulgaris leucoagglutinin (PHA-L) tracing. From PHA-L Injections in different parts of the inferior olive labelled axons could be traced to the contralateral cerebellum. Arriving in the deep cerebellar white matter, the olivocerebellar axons ran around and through the cerebellar nuclei. Plexuses of labelled terminal fibers appeared in the cerebellar nuclei, and the density of this innervation was estimated to 1-4 million varicosities per mm3. Ultrastructurally, these boutons engaged in asymmetric synapses with small dendrites. Bundles of labelled fibers continued into the folial white matter, and terminated as climbing fibers in sagittal zones of the cerebellar cortex. Both the cortical and nuclear terminations of the olivocerebellar system are strictly topographically organized. The plasticity of climbing fibers was studied after partial lesions of the inferior olive induced by 3-acetylpyridine. One to 6 months after the lesion, surviving climbing fibers demonstrated extensive sprouting. The newly formed axons originated from parent climbing fiber plexuses, grew in the direction of parallel fibers, and formed terminal plexuses around several neighbouring Purkinje cells. As normal climbing fiber terminals, these terminals formed asymmetric synapses with spines of proximal Purkinje cell dendrites, and evidence by Benedetti et al. (1983) shows that the regenerated innervation is electrophysiologically functional. It is suggested that denervated Purkinje cells release a trophic substance, which stimulate surviving climbing fibers to sprouting, axonal growth and synapse formation.  相似文献   

7.
In addition to mossy fibers and climbing fibers, the cerebellum receives NE-containing fibers originating particularly from the locus coerulus complex. Since the neurotransmitter of the coeruleo-cerebellar afferents acts mainly on Purkinje cells through beta-receptors, experiments were performed in cats to study the regional distribution and properties of the beta-adrenoceptors at corticocerebellar level; moreover, attempts were made to identify also the presence of beta-adrenoceptor binding in the cerebellar nuclei underlying the different zones of the cerebellar cortex. (-)-[3H]Dihydroalprenolol, a very potent beta-adrenergic antagonist, was used to characterize the beta-adrenergic receptors. (-)-[3H]DHA bound specifically to membrane preparations from all the cortical and nuclear zones of the cerebellum. In particular, beta-adrenergic receptors showed a high density and affinity in the cerebellar cortex with no significant difference in the medial with respect to the intermediate-lateral cortical area. The cerebellar nuclei showed a lower density of beta-adrenoceptors with a comparable or slightly lower affinity with respect to the cerebellar cortex. However, no difference was observed between the fastigial nucleus and the interposite-dentate nuclei. Scatchard analysis of saturation data revealed the presence of a single population of high affinity binding sites in all the examined regions, while the Hill plots excluded the presence of cooperative effects among the binding sites. Attempts to differentiate in the cerebellum beta 1- and beta 2-receptors by using agents which act as selective beta 1 and beta 2 ligands indicated that (-)-[3H]DHA specific binding in cerebellar cortex and nuclei affects predominantly the beta 2 subtype of adrenoceptors. A comparison between results obtained from the cerebellar cortex and those obtained from the whole cerebral cortex was also made. The whole cerebral cortex showed a lower density but a higher affinity than the cerebellar cortex. Moreover, inhibition of (-)-[3H]DHA binding by selective beta 1 and beta 2 ligands indicated the prevalence of the beta 1 subtype of adrenoceptors at this level.  相似文献   

8.
The two major cortices of the brain--the cerebral and cerebellar cortex--are massively connected through intercalated nuclei (pontine, cerebellar and thalamic nuclei). We suggest that the two cortices co-operate by generating precise temporal patterns in the cerebral cortex that are detected in the cerebellar cortex as temporal patterns assembled spatially in the mossy fibers. We will begin by showing that the tidal-wave mechanism works in the cerebellar cortex as a read-out mechanism for such spatio-temporal patterns due to the synchronous activity they generate in the parallel fiber system which drives the Purkinje cells--the output neurons of the cerebellar cortex--to fire action potentials. We will review the anatomy of the mossy fibers and show that within a "beam", or "row" of cerebellar cortex the mossy fibers in principle could embed a vast number of tidal-wave generating sequences. Based on anatomical data we will argue that the cerebellar mossy fiber-granule cell-Purkinje cell system can potentially detect and--through learning--select from an enormous number of spatio-temporal patterns.  相似文献   

9.
Beitz  Alvin J.  Saxon  Dale 《Brain Cell Biology》2004,33(1):49-74
Cerebellar climbing fibers have a unique relationship with the dendritic tree of cerebellar Purkinje cells and have been proposed as a key input in establishing long-term plastic changes in the cerebellar cortex. Although both glutamate and aspartate and a number of neuropeptides have been implicated as climbing fiber-released neurotransmitters/neuromodulators, the in vivo release of these substances during climbing fiber stimulation remains to be demonstrated. In the present study, climbing fibers were activated with harmaline and rats or mice were implanted with a microdialysis probe or a microperfusion probe, respectively, to measure amino acid or peptide release. Additional rats were euthanized at various timepoints post-harmaline injection and Fos immunocytochemistry was used to visualize the activation pattern of the inferior olive, cerebellar cortex and deep nuclei over time. Fos expression was first detected in the inferior olive at 15 min post-harmaline injection followed by expression in the deep cerebellar nuclei (30 min) and then in the cerebellar cortex (1 h). Between 2 and 6 h Purkinje cells expressing Fos were found in variable numbers in both the vermal and paravermal regions and there was a distinct parasagittal-banding pattern in the vermal region. Of several amino acids measured following harmaline administration only glutamate and aspartate levels increased significantly in the first dialysate sample compared to preharmaline levels and their release was blocked by prior lesion of the inferior olive. Citrulline also increased following climbing fiber stimulation, but this occurred in the second and third dialysate samples and may reflect nitric oxide production. Four peptides were examined in cerebellar microperfusates following climbing fiber stimulation. Only corticotropin releasing factor (CRF), calcitonin gene related peptide (CGRP) and bradykinin were significantly increased compared to pre-harmaline levels. These results suggest that glutamate, aspartate, CRF and CGRP are released from climbing fibers during activation of the olivocerebellar system.  相似文献   

10.
余启祥  高菊芳 《生理学报》1989,41(3):231-240
本文用电生理学和HRP示踪法,研究了大鼠海马-小脑皮层投射的空间分布,小脑皮层的海马投射区与其深部核团间的纤维联系。 电生理学的实验结果表明,刺激背侧海马CA_1/CA_3区,均可使小脑皮层第Ⅵ小叶的浦肯野细胞产生顺行多突触的诱发简单锋电位和复杂锋电位反应。提示背侧海马CA_1/CA_3区与小脑皮层之间有经苔状纤维和攀缘纤维的多突触投射。实验证明,大鼠的这一投射的终止区域,集中在小脑皮层第Ⅵ小叶中线外侧0.8—1.4mm的范围内;并且来自CA_1区的投射以对侧性为主,CA_3区的投射以同侧性为主。HRP示踪的实验表明,背侧海马CA_1/CA_3区在小脑皮层第Ⅵ小叶的投射区是小脑纵区组构的间位区,该区皮层与间位核之间存在着交互投射关系。  相似文献   

11.
With a novel model culture system in which afferents are co-cultured with purified populations of target neurons, we have demonstrated that a target cell within the central nervous system (CNS), the cerebellar granule neuron, poses a "stop-growing signal" for its appropriate afferents, the mossy fibers. To ask whether this stop signal is afferent specific, we co-cultured granule neurons with another cerebellar afferent system, the climbing fibers from the inferior olivary nuclei, which normally contact Purkinje neurons, and with retinal ganglion cell afferents, which never enter the cerebellum. Granule neurons do not pose a stop signal to either of these afferents. In contrast to pontine mossy afferents that grow well on laminin and showed reduced outgrowth on granule neurons, both olivary and retinal fibers displayed similar growth on laminin alone or on granule neurons. In addition, each afferent showed different degrees of fasciculation and growth cone morphology on laminin. Thus, the growth arrest signal sent by granule neurons is specifically recognized by their appropriate afferents. Moreover, these three types of afferents exhibit varying growth patterns on the same noncellular and cellular substrates, implicating distinct molecular characteristics of growth regulation for different classes of neurons that would contribute to specificity of synapse formation.  相似文献   

12.
Errante  L  Tang  D  Gardon  M  Sekerkova  G  Mugnaini  E  Shaw  G 《Brain Cell Biology》1998,27(2):69-84
Immunocytochemical staining with antibodies to the class III intermediate filament protein peripherin reveals discrete subpopulations of neurons and nerve fibres throughout the rat central nervous system. Some of these fibres enter the cerebellar granular and molecular layers. Here we use light and electron microscopic immunocytochemistry and confocal fluorescence microscopy to identify the peripherin positive fibres in the molecular layer of the cerebella of various mammals. 1) The peripherin positive fibres in the molecular layer have morphological attributes of climbing fibres, and peripherin positive fibres are also detected in the olivo-cerebellar tract. Furthermore peripherin positive neurons can be seen in the inferior olive, from which climbing fibres originate. (2 ) The peripherin positive molecular layer fibres rapidly degenerate in rats treated with 3-acetylpyridine (3-AP), a reagent which destroys neurons in the inferior olive, and the time course of degeneration of these mirrors that previously described for 3-AP induced destruction of climbing fibres. (3) Cerebella of other mammal species tested (mouse, rabbit, pig, cow and human) revealed a similar peripherin staining pattern in the cerebellum, including fibres in the molecular layer with the morphology of climbing fibres. (4) We also noted peripherin positive spinocerebellar and vestibulocerebellar mossy fibres in the cerebellar granular layer of folia known to receive these inputs. (5) A subset of perivascular nerve fibres are also peripherin positive. These results show that peripherin is a useful marker for mammalian cerebellar climbing fibres, and that a subset of morphologically distinct cerebellar mossy fibres are also peripherin positive.  相似文献   

13.
Turnover rates of amino acid neurotransmitters in regions of rat cerebellum   总被引:1,自引:0,他引:1  
The turnover rates of aspartate, gamma-aminobutyric acid (GABA), glutamate, glutamine, alanine, serine, and glycine were measured in five regions of rat cerebellum. Turnover rates of the putative neurotransmitters (aspartate, glutamate, and GABA) were 2-20-fold higher than those of alanine and serine, and generally consistent with the proposed neurotransmitter functions for these amino acids. However, glutamate turnover was high and similar in magnitude in the deep nuclei and granule layer, suggesting possible release, not only from parallel fibers, but from mossy fibers as well. The differential distribution of turnover rates for GABA supports its neuronal release by Purkinje, stellate, basket, and Golgi cells, whereas aspartate may be released by both climbing and mossy fibers. The distribution of glycine turnover rates is consistent with release from Golgi cells, whereas alanine may be released from granule cell parallel fibers. Turnover rates measured in two other motor areas, the striatum and motor cortex, indicated that utilization of these amino acid neurotransmitters is differentially distributed in brain motor regions. The data indicate that turnover rate measurements may be useful in identifying neurotransmitter function where content measurements alone are insufficient.  相似文献   

14.
The projection from the sacro-coccygeal region of the spinal cord to the cerebellum was studied by two different techniques in the cat. In five cats wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) was injected caudal to a preceding unilateral cordotomy at the sacral level, aimed at interrupting the spinocerebellar tracts on one side completely, and the distribution of WGA-HRP labeled mossy fibers and mossy fiber terminals was studied in the cerebellum. In three additional cats, degenerating fibers were examined in Fink-Heimer stained sections following unilateral transection of the lateral and ventral funiculi at L7 or S3 level. In the WGA-HRP experiments the labeled mossy fiber terminals were located bilaterally in lobules I-V. Most of them were found in the anterior part of lobule II. In addition, labeled terminals were observed in sublobule VIIIB and in pars copularis of the paramedian lobule, contralateral to the cordotomy. The terminals in the anterior lobe were concentrated in longitudinal zones parallel to the mid sagittal plane. In lobule II, the terminals were most abundant in the superficial, apical parts of the folia. Some presumed terminals were also seen in the cerebellar nuclei. Labeled fibers were found contralateral, but not ipsilateral to the cordotomy in the superior and inferior cerebellar peduncles, as well as in the spinal cord rostral to the cordotomy. The results of the degeneration experiments were the same as those of the WGA-HRP experiments with regard to the detailed projections in the cerebellar cortex. This is strong support against the possibility that WGA-HRP labeled cerebellar mossy fiber terminals, following WGA-HRP injections in the spinal cord, would represent terminals of collaterals of retrogradely labeled neurons. It also lends strong support in favour of WGA-HRP as a reliable anterograde tracer for studying cerebellar cortical projections of spinocerebellar neurons in the cat.  相似文献   

15.
In the brain, the polyamines spermidine (Spd) and spermine (Spm) serve highly specific functions by interacting with various ion channel receptors intimately involved with synaptic signaling. Both, glial cells and neurons contain Spd/Spm, but release and uptake mechanisms could re-distribute polyamines between cell types. The cellular and subcellular localization of polyamine biosynthetic enzymes may therefore offer a more appropriate tool to identify local sources of enhanced Spd/Spm synthesis, which may be related with specific roles in neuronal circuits and synaptic function. A recently characterized antibody against Spd synthase was therefore used to screen the rat brain for compartment-specific peaks in enzyme expression. The resulting labeling pattern indicated a clearly heterogeneous expression predominantly localized to neurons and neuropil. The highest levels of Spd synthase expression were detected in the accumbens nucleus, taenia tecta, cerebellar cortex, cerebral cortical layer I, hippocampus, hypothalamus, mesencephalic raphe nuclei, central and lateral amygdala, and the circumventricular organs. Besides a diffuse labeling of the neuropil in several brain areas, the distinct labeling of mossy fiber terminals in the cerebellar cortex directly indicated a synaptic role for Spd synthesis. Electron microscopy revealed a preferential distribution of the immunosignal in synaptic vesicle containing areas. A pre-synaptic localization was also observed in parallel and climbing fiber terminals. Electrophysiological recordings in acute cerebellar slices revealed a Spd-induced block of evoked extracellular field potentials resulting from mossy fiber stimulation in a dose-dependent manner.  相似文献   

16.
Hesslow G  Svensson P  Ivarsson M 《Neuron》1999,24(1):179-185
Definitive evidence is presented that the conditioned stimulus (CS) in classical conditioning reaches the cerebellum via the mossy fiber system. Decerebrate ferrets received paired forelimb and periocular stimulation until they responded with blinks to the forelimb stimulus. When direct mossy fiber stimulation was then given, the animals responded with conditioned blinks immediately, that is, without ever having been trained to the mossy fiber stimulation. Antidromic activation was prevented by blocking mossy fibers with lignocaine ventral to the stimulation site. It could be excluded that cerebellar output functioned as the CS. Analysis of latencies suggests that conditioned responses (CRs) are not generated by mossy fiber collaterals to the deep nuclei. Hence, the memory trace is probably located in the cerebellar cortex.  相似文献   

17.
Many mossy fiber pathways to the neurons of the deep cerebellar nucleus (DCN) originate from the spinal motor circuitry. For cutaneously activated spinal neurons, the receptive field is a tag indicating the specific motor function the spinal neuron has. Similarly, the climbing fiber receptive field of the DCN neuron reflects the specific motor output function of the DCN neuron. To explore the relationship between the motor information the DCN neuron receives and the output it issues, we made patch clamp recordings of DCN cell responses to tactile skin stimulation in the forelimb region of the anterior interposed nucleus in vivo. The excitatory responses were organized according to a general principle, in which the DCN cell responses became stronger the closer the skin site was located to its climbing fiber receptive field. The findings represent a novel functional principle of cerebellar connectivity, with crucial importance for our understanding of the function of the cerebellum in movement coordination.  相似文献   

18.
Chen  Suzanne  Gil  Orlando  Ren  Yu Qin  Zanazzi  George  Salzer  James L.  Hillman  Dean E. 《Brain Cell Biology》2001,30(11):927-937
We investigated the temporal expression of the neural cell adhesion molecule, neurotrimin, in the rat cerebellum and the brainstem from birth to adulthood using immunoreactive labeling. A wave of expression accompanied the development of projection pathways extending from brainstem nuclei (pons/inferior olive) through the cerebellar peduncles into the arbor vitae and disappeared with myelination by P14. Immuno-EM revealed expression of neurotrimin on the surface of unmyelinated axons but not on astrocytes or oligodendroglia. With the development of the molecular and internal granular layers, intense labeling occurred on the surface of parallel fiber bundles, granule cells and mossy fibers. With synaptogenesis, each excitatory junction was labeled by the immunoreaction. By P21, neurotrimin reactivity decreased on the surfaces of neuronal somata, dendrites and axons but remained at excitatory synaptic contact sites in both the molecular and granular layers. The spatial-temporal expression pattern of neurotrimin suggests that this adhesion molecule plays a role in axonal fasciculation of specific cerebellar systems and may also be involved in the formation of excitatory synapses and their stabilization into adulthood.  相似文献   

19.
The levels of glutamate (Glu), aspartate (Asp), -amino-n-butyric acid (GABA), and taurine (Tau) were determined in the cortex, molecular layer, and deep nuclei of cerebella of adult rats exposed to X-irradiation at 12–15 days following birth (to prevent the acquisition of late-forming granule cells; 12–15x group) and 8–15 days following birth (to prevent the acquisition of granule and stellate cells; 8–15x group). Also, the levels of the four amino acids were measured in the crude synaptosomal fraction (P2) isolated from the whole cerebella of the control, 12–15x, and 8–15x groups. The level of Glu was significantly decreased by (1) 6–20% in the cerebellar cortex; (2) 15–20% in the molecular layer; and (3) 25–50% in the P2 fraction of the X-irradiated groups relative to control values. The content of Glu in the deep nuclei was not changed by X-irradiation treatment. Regional levels of Asp were unchanged by X-irradiation, while its level in P2 decreased by 15–30% after treatment. The levels of GABA and Tau in the molecular layer, deep nuclei, or P2 were not changed in the experimental groups. However, there was a 15% increase in the levels of GABA and Tau in the cerebellar cortex of the 8–15x group relative to control values. The data support the proposed role of glutamate as the excitatory transmitter released from the cerebellar granule cells but are inconclusive regarding a transmitter role for either Tau or GABA from cerebellar stellate cells.  相似文献   

20.
Development and evolution of cerebellar neural circuits   总被引:1,自引:0,他引:1  
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号