首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia from birth increases resistance to myocardial ischemia in infant rabbits. We hypothesized that increased cardioprotection in hearts chronically hypoxic from birth persists following development in a normoxic environment and involves increased activation of nitric oxide synthase (NOS) and ATP-dependent K (K(ATP)) channels. Resistance to myocardial ischemia was determined in rabbits raised from birth to 10 days of age in a normoxic (Fi(O(2)) = 0.21) or hypoxic (Fi(O(2)) = 0.12) environment and subsequently exposed to normoxia for up to 60 days of age. Isolated hearts (n = 8/group) were subjected to 30 min of global ischemia followed by 35 min of reperfusion. At 10 days of age, resistance to myocardial ischemia (percent recovery postischemic recovery left ventricular developed pressure) was higher in chronically hypoxic hearts (68 +/- 4%) than normoxic controls (43 +/- 4%). At 10 days of age, N(G)-nitro-L-arginine methyl ester (200 microM) and glibenclamide (3 microM) abolished the cardioprotective effects of chronic hypoxia (45 +/- 4% and 46 +/- 5%, respectively) but had no effect on normoxic hearts. At 30 days of age resistance to ischemia in normoxic hearts declined (36 +/- 5%). However, in hearts subjected to chronic hypoxia from birth to 10 days and then exposed to normoxia until 30 days of age, resistance to ischemia persisted (63 +/- 4%). L-NAME or glibenclamide abolished cardioprotection in previously hypoxic hearts (37 +/- 4% and 39 +/- 5%, respectively) but had no effect on normoxic hearts. Increased cardioprotection was lost by 60 days. We conclude that cardioprotection conferred by adaptation to hypoxia from birth persists on subsequent exposure to normoxia and is associated with enhanced NOS activity and activation of K(ATP) channels.  相似文献   

2.
Jiang X  Shi E  Nakajima Y  Sato S 《Life sciences》2006,78(22):2543-2549
Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) have been shown to be mediators of cardioprotection induced by ischemic preconditioning and opioids. However, it is not known whether COX-2 is involved in morphine-induced cardioprotection accompanied with iNOS. Therefore, we investigated the role of COX-2 in morphine-induced cardioprotection and the effect of iNOS on COX-2. Myocardial ischemia was induced by a 45-min coronary artery occlusion in mice. Infarct size (IS) as a percentage of the area at risk (AAR) was determined by triphenyltetrazolium chloride staining. The COX-2-selective inhibitor NS-398 was used to investigate the role of COX-2. Expression of COX-2 was assessed by Western blotting, and the myocardial prostaglandin (PG)E2 and 6-keto-PGF(1alpha) contents were measured using enzyme immunoassays. The iNOS-selective inhibitor SMT and iNOS gene-knockout mice were used to investigate the effect of iNOS on COX-2. IS/AAR was reduced significantly 1 and 24 h after morphine preconditioning. The infarct-sparing effect 24 h after morphine administration, but not the cardioprotection 1 h later, was completely abolished by NS-398. Marked enhancement of myocardial COX-2 expression was measured 24 h after morphine preconditioning associated with up-regulation of myocardial contents of PGE2 and 6-keto-PGF(1alpha). Neither the level of COX-2 nor the contents of PGE2 and 6-keto-PGF(1alpha) were enhanced 1 h later. Administration of SMT and targeted abrogation of iNOS gene blocked the enhancement of myocardial PGE2 and 6-keto-PGF(1alpha) 24 h after morphine administration but did not inhibit the up-regulation of COX-2 expression. We concluded that COX-2 mediates morphine-induced delayed cardioprotection via an iNOS-dependent pathway.  相似文献   

3.
The cardioprotective property of hydrogen sulfide (H(2)S) is recently reported. However, cellular signaling cascades mediated by H(2)S are largely unclear. This study was undertaken to explore the molecular mechanism of H(2)S-induced cardioprotection in mouse heart by utilizing in vivo model of cardiac injury. We report here that intraperitoneal administration of sodium hydrogen sulfide (NaHS, 50 μmol kg(-1 )day(-1) for 2 days), a H(2)S donor, significantly (P ≤ 0.05) increased nitric oxide levels in serum as well as myocardium without any sign of myocardial injury. Typical characteristics of myocardial injury induced by isoproterenol (ISO) administration was significantly (P ≤ 0.05) abrogated by NaHS administration as evidenced from reduction in elevated thiobarbituric acid reactive substances (TBARS) and normalization of glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), and catalase activity. Further, decrease in TNF-α expression and improvement in myocardial architecture was also observed. However, co-administration of N-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor, and Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor along with NaHS and ISO abrogated the beneficial effect of H(2)S differentially. Inhibition of NOS significantly (P ≤ 0.05) increased serum creatine kinase, lactate dehydrogenase, serum glutamic oxaloacetic transaminase activity and myocardial TBARS, along with significant (P ≤ 0.05) reduction of myocardial GSH, SOD, and catalase. This was followed by increase in TNF-α expression and histopathological changes. Our results revealed that H(2)S provides myocardial protection through interaction with NOS and COX-2 pathway and inhibition of NOS completely abrogates the hydrogen sulfide-induced cardioprotection in mice.  相似文献   

4.
We have previously shown that atherosclerotic apolipoprotein E-deficient (apoE(-/-)) x LDL receptor-deficient (LDLR(-/-)) mice develop myocardial infarction when exposed to hypoxic stress. This study was performed to assess the role of thrombin and thrombosis in this process. ApoE(-/-) x LDLR(-/-) mice were fed a cholesterol-rich diet for 8 mo and were then subjected to hypoxic stress while receiving isoflurane anesthesia. One group received a bolus dose (5.6 micromol/kg) of the thrombin inhibitor melagatran, and control animals received PBS 10 min before the hypoxic stress. The mice were exposed to 10 min of hypoxia followed by normoxia. Ten minutes after the stress, Alzet pumps delivering melagatran (20 nmol x kg x (-1)min(-1)) or PBS were implanted, and the mice were allowed to recover for 48 h. The cardiac response was analyzed by histology, immunohistochemistry, and serum troponin T assay. All animals showed reversible ECG changes as a sign of ischemia during hypoxic stress, and 50% developed infarctions afterward as judged by troponin T levels. The group that received thrombin inhibitor had significantly lower troponin T and smaller myocardial infarctions than the PBS-treated group. These data show that thrombin generation is an important pathogenetic factor and suggest that coronary thrombosis is involved in myocardial infarction in atherosclerotic mice. Exposure of atherosclerotic mice to hypoxia leads to myocardial infarction through a two-phase pathway in which acute transient ischemia is followed by thrombin-dependent, irreversible, myocardial ischemia and myocardial cell death.  相似文献   

5.
Opioids confer biphasic (early and late) cardioprotection against myocardial infarction by opening mitochondrial ATP-sensitive K(+) channels. It is unknown whether cyclooxygenase-2 (COX-2), which mediates ischemia-induced late preconditioning, also mediates opioid-induced cardioprotection. Isolated perfused rat hearts were subjected to 20 min of global ischemia followed by 20 min of reperfusion. BW-373U86 (BW), a delta-opioid receptor agonist, was administered 1, 12, or 24 h before death. Recovery of left ventricular developed pressure (LVDP) after ischemia-reperfusion improved when BW was administered 1 or 24 h before ischemia (control: 57 +/- 8, BW 1 h: 75 +/- 5, BW 24 h: 85 +/- 6%) but not when it was administered 12 h before (60 +/- 5%). Levels of 6-keto-PGF(1alpha) (a stable metabolite of PGI(2)) in coronary effluent after 20 min of reperfusion were higher with 24-h BW pretreatment than in controls (1,053 +/- 92 vs. 724 +/- 81 pg/ml), whereas 6-keto-PGF(1alpha) levels at baseline did not differ. Administration of a selective COX-2 inhibitor, NS-398, abolished the late phase of cardioprotection (recovery of LVDP, 53 +/- 8%) and attenuated the increase in PGI(2) (706 +/- 138 pg/ml) but did not block the early phase of cardioprotection. The selective COX-1 inhibitor SC-560 did not affect either phase of protection. Western immunoblotting revealed upregulation of PGI(2) synthase protein 24 h after BW administration without changes in COX-1 and COX-2 protein levels. In conclusion, the late (but not the early) phase of delta-opioid receptor-induced preconditioning is mediated by COX-2. A functional coupling between COX-2 and upregulated PGI(2) synthase appears to underlie this cardioprotective phenomenon in the rat.  相似文献   

6.
Physiologically modulated concentrations of nitric oxide (NO) are generally beneficial, but excessive NO can injure myocardium by producing cytotoxic peroxynitrite. Recently we reported that intermittent, normobaric hypoxia conditioning (IHC) produced robust cardioprotection against infarction and lethal arrhythmias in a canine model of coronary occlusion-reperfusion. This study tested the hypothesis that IHC suppresses myocardial nitric oxide synthase (NOS) activity and thereby dampens explosive, excessive NO formation upon reperfusion of occluded coronary arteries. Mongrel dogs were conditioned by a 20 d program of IHC (FIO(2) 9.5-10%; 5-10 min hypoxia/cycle, 5-8 cycles/d with intervening 4 min normoxia). One day later, ventricular myocardium was sampled for NOS activity assays, and immunoblot detection of the endothelial NOS isoform (eNOS). In separate experiments, myocardial nitrite (NO(2)(-)) release, an index of NO formation, was measured at baseline and during reperfusion following 1 h occlusion of the left anterior descending coronary artery (LAD). Values in IHC dogs were compared with respective values in non-conditioned, control dogs. IHC lowered left and right ventricular NOS activities by 60%, from 100-115 to 40-45 mU/g protein (P < 0.01), and decreased eNOS content by 30% (P < 0.05). IHC dampened cumulative NO(2)(-) release during the first 5 min reperfusion from 32 +/- 7 to 14 +/- 2 mumol/g (P < 0.05), but did not alter hyperemic LAD flow (15 +/- 2 vs. 13 +/- 2 ml/g). Thus, IHC suppressed myocardial NOS activity, eNOS content, and excessive NO formation upon reperfusion without compromising reactive hyperemia. Attenuation of the NOS/NO system may contribute to IHC-induced protection of myocardium from ischemia-reperfusion injury.  相似文献   

7.
Dong JW  Zhu HF  Zhu WZ  Ding HL  Ma TM  Zhou ZN 《Cell research》2003,13(5):385-391
Intermittent hypoxia has been shown to provide myocardial protection against ishemiaJreperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts comparedwith normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reducemyocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl-2/Bax, especially in membrane fraction.  相似文献   

8.
In conscious rabbits, a sequence of six 4-min coronary occlusion/4-min reperfusion cycles, which elicits late preconditioning (PC), caused rapid activation of calcium-dependent nitric oxide (NO) synthase (NOS) [cNOS; endothelial NOS (eNOS) and/or neuronal NOS (nNOS)], whereas calcium-independent NOS [inducible NOS (iNOS)] activity remained unchanged. The enhanced cNOS activity was associated with increased myocardial levels of NO(2) and/or NO(3) (NO(x)). Twenty-four hours after ischemic PC was induced, the opposite pattern was observed, i.e., there was a pronounced increase in cytosolic iNOS activity but no change in cNOS activity. The initial burst of ischemia-induced cNOS activity was not affected by pretreatment with the antioxidant N-2-mercaptopropionyl glycine (MPG), the protein kinase C (PKC) inhibitor chelerythrine, or the tyrosine kinase inhibitor lavendustin A, indicating that it is independent of the generation of oxidant species and the activation of PKC and tyrosine kinases. In contrast, the delayed upregulation of iNOS 24 h after PC was prevented by pretreatment with N(omega)-nitro-L-arginine, MPG, or chelerythrine before the PC ischemia, indicating that it is triggered by a signaling mechanism that involves the generation of NO, the formation of oxidant species, and the activation of PKC. Taken together, these results demonstrate that, in conscious animals, ischemic PC elicits a biphasic response in cardiac NOS activity, i. e., an immediate activation of cNOS (most likely eNOS) followed 24 h later by a delayed upregulation of iNOS. To our knowledge, this is the first study to directly measure NOS activity after brief myocardial ischemia in vivo. In conjunction with previous functional studies, the data support a distinctive role of NOS isoforms in late PC, with eNOS serving as the trigger on day 1 and iNOS as the mediator on day 2.  相似文献   

9.
We assessed 1) whether pretreatment before ischemia with pioglitazone (Pio) limits infarct size (IS) and whether this protective effect is due to nitric oxide synthase (NOS) and/or prostaglandin production, as has been shown for atorvastatin (ATV); and 2) whether Pio and ATV have synergistic effects on myocardial protection. Sprague-Dawley rats received oral ATV (10 mg.kg-1.day-1), Pio (10 mg.kg-1.day-1), their combination (Pio+ATV), or water alone for 3 days. Additional rats received Pio (10 mg.kg-1.day-1) for 3 days and intravenous SC-58125 [a cyclooxygenase-2 (COX-2) inhibitor] or SC-560 (a COX-1 inhibitor) 15 min before ischemia. Rats underwent 30 min of myocardial ischemia and 4 h of reperfusion, or hearts were harvested for analysis. IS in the Pio and in the ATV groups was significantly smaller than in the sham-treated group. IS in the Pio+ATV group was smaller than in all other groups (P<0.001 vs. each group). The protective effect of Pio was abrogated by SC-58125 but not by SC-560. Pio, ATV, and Pio + ATV increased the expression and activity of cytosolic phospholipase A2 (cPLA2) and COX-2. ATV increased phosphorylated-Akt, phosphorylated-endothelial NOS (P-eNOS), inducible NOS, and COX-2 levels. In contrast, Pio caused an insignificant increase in myocardial levels of phosphorylated-Akt but did not change P-eNOS and iNOS expression. In conclusion, the IS-limiting effects of Pio and ATV involve COX-2. However, the upstream steps differ. ATV induced eNOS phosphorylation and iNOS, cPLA2, and COX-2 expression, whereas Pio induced mainly the expression and activity of cPLA2. The effects of Pio and ATV were additive.  相似文献   

10.
This study aimed to underline the interaction between hypoxia-inducible factor-1 (HIF-1) and the inducible nitric oxide synthase (iNOS) gene in vivo and their contribution to the delayed myocardial preconditioning induced by acute intermittent hypoxia (IH) in the rat using chromatin immunoprecipitation and pharmacological inhibition by low-dose cadmium. Langendorff-perfused hearts of Wistar rats exposed to normoxia or IH 24 h earlier were submitted to global ischemia and reperfusion. Effects of iNOS inhibition by aminoguanidine (100 microM) before ischemia or of low-dose injection of cadmium chloride (1 mg/kg) before normoxia or IH were tested. Myocardial HIF-1 and iNOS quantification and in vivo chromatin immunoprecipitation of HIF-1 bound to the iNOS gene promoter were performed. IH-induced delayed cardioprotection resulted in an improvement in coronary flow and functional recovery at reperfusion and a decrease in infarct size. Myocardial HIF-1 activity was increased with resulting targeting of the iNOS gene. Aminoguanidine abolished the cardioprotective effects of IH. Cadmium chloride treatment before IH prevented myocardial HIF-1 activation (72.3 +/- 4.0 vs. 42.1 +/- 9.7 arbitrary units after cadmium chloride; P < 0.05), targeting of the iNOS gene, iNOS expression, and preconditioning (infarct size: 15.9 +/- 5.6 vs. 30.1 +/- 5.4% after cadmium chloride; P < 0.05). This study is the first to demonstrate the interaction of HIF-1 with the myocardial iNOS gene in situ after hypoxic preconditioning. Prevention of HIF-1 activation and iNOS gene targeting by a single low dose of cadmium abolished the delayed cardioprotective effects, bringing insight into the cardiovascular consequences of cadmium exposure.  相似文献   

11.
Obstructive sleep apnea is associated with increased risk for cardiovascular diseases. As obstructive sleep apnea is characterized by episodic cycles of hypoxia and normoxia during sleep, we investigated effects of intermittent hypoxia (IH) on ischemia-reperfusion-induced myocardial injury. C57BL/6 mice were subjected to IH (2 min 6% O(2) and 2 min 21% O(2)) for 8 h/day for 1, 2, or 4 wk; isolated hearts were then subjected to ischemia-reperfusion. IH for 1 or 2 wk significantly enhanced ischemia-reperfusion-induced myocardial injury. However, enhanced cardiac damage was not seen in mice treated with 4 wk of IH, suggesting that the heart has adapted to chronic IH. Ischemia-reperfusion-induced lipid peroxidation and protein carbonylation were enhanced with 2 wk of IH, while, with 4 wk, oxidative stress was normalized to levels in animals without IH. H(2)O(2) scavenging activity in adapted hearts was higher after ischemia-reperfusion, suggesting the increased antioxidant capacity. This might be due to the involvement of thioredoxin, as the expression level of this protein was increased, while levels of other antioxidant enzymes were unchanged. In the heart from mice treated with 2 wk of IH, ischemia-reperfusion was found to decrease thioredoxin. Ischemia-reperfusion injury can also be enhanced when thioredoxin reductase was inhibited in control hearts. These results demonstrate that IH changes the susceptibility of the heart to oxidative stress in part via alteration of thioredoxin.  相似文献   

12.
Nicorandil has been shown to induce an infarct-limiting effect similar to that induced by the early phase of ischemic preconditioning (PC). The goals of this study were to determine whether nicorandil induces a delayed cardioprotection that is analogous to the late phase of ischemic PC and, if so, whether nicorandil-induced late PC is associated with upregulation of cardioprotective proteins. Chronically instrumented, conscious rabbits received vehicle (intravenous normal saline; control group, n = 10), nicorandil (100 microg/kg bolus + 30 microg x kg(-1) x min(-1) i.v. for 60 min; nicorandil group, n = 10), or ischemic PC (6 cycles of 4-min coronary occlusion/4-min reperfusion; PC group, n = 8). Twenty-four hours later, rabbits underwent a 30-min coronary occlusion, followed by 3 days of reperfusion. Myocardial infarct size was significantly reduced in rabbits pretreated with nicorandil (27.5 +/- 5.3% of the risk region) or with ischemia (30.3 +/- 4.2%) versus controls (59.1 +/- 4.7%, P < 0.05 vs. both). Furthermore, the expression of cyclooxygenase-2 (COX-2) and Bcl-2 was significantly elevated (+38% and +126%, respectively; P < 0.05) in myocardium of rabbits given nicorandil 24 h earlier versus controls. We conclude that nicorandil induces delayed cardioprotection against myocardial infarction similar to that afforded by the late phase of ischemic PC, possibly by upregulating COX-2 and Bcl-2.  相似文献   

13.
COX-2 and iNOS in opioid-induced delayed cardioprotection in the intact rat   总被引:10,自引:0,他引:10  
Patel HH  Hsu AK  Gross GJ 《Life sciences》2004,75(2):129-140
Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) have been previously implicated in the late phase of cardioprotection associated with opioid-induced and ischemic preconditioning (IPC) in conscious rabbits and COX-2 in isolated rat hearts pretreated with an exogenous delta opioid agonist. However, it is not know if both iNOS and COX-2 mediate the late phase of cardioprotection induced by opioids in the intact blood-perfused rat. Therefore, we investigated the role of COX-2 and iNOS in the delayed phase of protection mediated by delta opioid receptor activation. Rats were pretreated 24 hours prior to an occlusion/reperfusion protocol with the selective non-peptide delta opioid agonists, BW373U86 (BW) and SNC-121 (SNC). NS-398, a selective COX-2 inhibitor was administered after the 24-hour recovery period just prior to index ischemia. The selective iNOS inhibitors, S-methylthiourea (SMT) and aminoguanidine (AG), were administered in conjunction with opioid pretreatment or were also given 24 hours after opioid administration just prior to index ischemia. COX-2 inhibition by NS-398 given 24 hours after opioid administration attenuated the protective effects of both BW and SNC (46 +/- 6 vs. 13 +/- 3 and 51 +/- 5 vs. 29 +/- 2, p < 0.001, respectively). Similarly, inhibition of iNOS following 24 hours of treatment with opioids also attenuated the protective effects of BW and SNC. However, the delayed protective effects of the opioids were not attenuated by pretreatment with the iNOS inhibitors 24 hours prior to the infarct protocol. These results suggest that both COX-2 and iNOS are mediators of delayed protection induced by non-peptide delta opioid agonists. It appears that the trigger effect is not dependent on the activity of iNOS or COX-2 but the late phase of cardioprotection is dependent on the upregulation of these enzymes.  相似文献   

14.
Opening of Ca2+-activated K+ (KCa) channels has been shown to confer early cardioprotection. It is unknown whether the opening of these channels also induces delayed cardioprotection. In addition, we determined the involvement of nitric oxide synthases (NOSs), which have been implicated in cardioprotection induced by opening of mitochondrial ATP-sensitive K+ (KATP) channels. Adult male ICR mice were pretreated with the KCa-channel opener NS-1619 either 10 min or 24 h before 30 min of global ischemia and 60 min of reperfusion (I/R) in Langendorff mode. Infusion of NS-1619 (10 microM) for 10 min before I/R led to smaller infarct sizes as compared with the vehicle (DMSO)-treated group (P <0.05). This infarct-limiting effect of NS-1619 was associated with improvement in ventricular functional recovery after I/R. The NS-1619-induced protection was abolished by coadministration with the KCa-channel blocker paxilline (1 microM). Similarly, pretreatment with NS-1619 (1 mg/kg ip) induced delayed protection 24 h later (P <0.05). Interestingly, the NS-1619-induced late protection was not blocked by the NOS inhibitor Nomega-nitro-L-arginine methyl ester (15 mg/kg ip). Unlike diazoxide (the opener of mitochondrial KATP channels), NS-1619 did not increase the expression of inducible or endothelial NOS. Western blot analysis demonstrated the existence of alpha- and beta-subunits of KCa channels in mouse heart tissue. We conclude that opening of KCa channels leads to both early and delayed preconditioning effects through a mechanism that is independent of nitric oxide.  相似文献   

15.
Epoxyeicosatrienoic acids (EETs) are active metabolites of arachidonic acid that are inactivated by soluble epoxide hydrolase enzyme (sEH) to dihydroxyeicosatrienoic acid. EETs are known to render cardioprotection against ischemia reperfusion (IR) injury by maintaining mitochondrial function. We investigated the effect of a novel sEH inhibitor (sEHi) in limiting IR injury. Mouse hearts were perfused in Langendorff mode for 40 min and subjected to 20 min of global no-flow ischemia followed by 40 min of reperfusion. Hearts were perfused with 0.0, 0.1, 1.0 and 10.0 μmol·L(-1) of the sEHi N-(2-chloro-4-methanesulfonyl-benzyl)-6-(2,2,2-trifluoro-ethoxy)-nicotinamide (BI00611953). Inhibition of sEH by BI00611953 significantly improved postischemic left-ventricular-developed pressure and reduced infarct size following IR compared with control hearts, and similar to hearts perfused with 11,12-EETs (1 μmol·L(-1)) and sEH(-/-) mice. Perfusion with the putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 10 μmol·L(-1)), or the plasma membrane K(ATP) channels (pmK(ATP)) inhibitor (glibenclamide, 10 μmol·L(-1)) abolished the improved recovery by BI00611953 (1 μmol·L(-1)). Mechanistic studies in H9c2 cells demonstrated that BI0611953 decreased ROS generation, caspase-3 activity, proteasome activity, increased HIF-1∝ DNA binding, and delayed the loss of mitochondrial membrane potential (ΔΨ(m)) caused by anoxia-reoxygenation. Together, our data demonstrate that the novel sEHi BI00611953, a nicotinamide-based compound, provides significant cardioprotection against ischemia reperfusion injury.  相似文献   

16.

Aims

Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

Methods

Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.

Results

IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).

Conclusions

The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.  相似文献   

17.

Background

Remote ischemic conditioning (RIC), induced by brief periods of limb ischemia has been shown to decrease acute myocardial injury and chronic responses after acute coronary syndromes. While several signaling pathways have been implicated, our understanding of the cardioprotection and its underlying mediators and mechanisms remains incomplete. In this study we examine the effect of RIC on pro-autophagy signaling as a possible mechanism of benefit.

Methods and Results

We examined the role of autophagy in the acute/first window (15 minutes after RIC), delayed/second window (24 hours after RIC) and chronic (24 hours after 9 days of repeated RIC) phases of cardioprotection. C57BL/6 mice (N = 69) were allocated to each treatment phase and further stratified to receive RIC, induced by four cycles of 5 minutes of limb ischemia followed by 5 minutes of reperfusion, or control treatment consisting solely of handling without transient ischemia. The groups included, group 1 (1W control), group 2 (1W RIC), group 3 (2W control), group 4 (2W RIC), group 5 (3W control) and group 6 (3W RIC). Hearts were isolated for assessment of cardiac function and infarct size after global ischemia using a Langendorff preparation. Infarct size was reduced in all three phases of cardioprotection, in association with improvements in post-ischemic left ventricular end diastolic pressure (LVEDP) and developed pressure (LVDP) (P<0.05). The pattern of autophagy signaling varied; 1W RIC increased AMPK levels and decreased the activation of mammalian target of rapamycin (mTOR), whereas chronic RIC was associated with persistent mTOR suppression and increased levels of autophagosome proteins, LC3II/I and Atg5.

Conclusions

Cardioprotection following transient ischemia exists in both the acute and delayed/chronic phases of conditioning. RIC induces pro-autophagy signaling but the pattern of responses varies depending on the phase, with the most complete portfolio of responses observed when RIC is administered chronically.  相似文献   

18.
Heparin and nitric oxide (NO) attenuate changes to the pulmonary vasculature caused by prolonged hypoxia. Heparin may increase NO; therefore, we hypothesized that heparin may attenuate hypoxia-induced pulmonary vascular remodeling via a NO-mediated mechanism. In vivo, rats were exposed to normoxia (N) or hypoxia (H; 10% O(2)) with or without heparin (1,200 U x kg-1 x day-1) and/or the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME; 20 mg x kg-1 x day-1) for 3 days or 3 wk. Heparin attenuated increases in pulmonary arterial pressure, the percentage of muscular pulmonary vessels, and their medial thickness induced by 3 wk of H. Importantly, although L-NAME alone had no effect, it prevented these effects of heparin on vascular remodeling. In H lungs, heparin increased NOS activity and cGMP levels at 3 days and 3 wk and endothelial NOS protein expression at 3 days but not at 3 wk. In vitro, heparin (10 and 100 U x kg-1 x ml-1) increased cGMP levels after 10 min and 24 h in N and anoxic (0% O2) endothelial cell-smooth muscle cell (SMC) coculture. SMC proliferation, assessed by 5-bromo-2'-deoxyuridine incorporation during a 3-h incubation period, was decreased by heparin under N, but not anoxic, conditions. The antiproliferative effects of heparin were not altered by L-NAME. In conclusion, the in vivo results suggest that attenuation of hypoxia-induced pulmonary vascular remodeling by heparin is NO mediated. Heparin increases cGMP in vitro; however, the heparin-induced decrease in SMC proliferation in the coculture model appears to be NO independent.  相似文献   

19.
Sildenafil, a potent inhibitor of phosphodiesterase type 5, has recently been investigated in animal models of myocardial ischemia-reperfusion (MI/R) injury. Previous studies have suggested that the protective effects of sildenafil are mediated via activation of endothelial nitric oxide (NO) synthesis (eNOS) and inducible NOS (iNOS). To further investigate the protective mechanism of sildenafil, we subjected wild-type, eNOS, and iNOS null animals to 30 min of myocardial ischemia and 24 h of reperfusion. Treatment with 0.06 mg/kg sildenafil 5 min before reperfusion significantly reduced myocardial infarct size in wild-type, eNOS null mice (eNOS(-/-)), and iNOS(-/-) animals. Additionally, the low dose utilized in this study did not alter myocardial cGMP. These results suggest that acute low-dose sildenafil-mediated cardioprotection is independent of eNOS, iNOS, and cGMP. In a second series of experiments, we investigated sildenafil in db/db diabetic mice subjected to MI/R. We found that sildenafil failed to protect diabetic mice against MI/R. However, NO(.) donor therapy was found to significantly protect against MI/R injury in both nondiabetic and diabetic mice, suggesting that protection could be conferred in diabetic mice and that the upstream modulator of soluble guanylyl cyclase, NO(.), may mediate protection independent of cGMP signaling. The present study suggests that further research is needed to delineate the precise mechanisms by which sildenafil exerts cardioprotection.  相似文献   

20.
白藜芦醇甙对大鼠心脏缺血/再灌注损伤的保护作用   总被引:1,自引:0,他引:1  
Zhang LP  Yang CY  Wang YP  Cui F  Zhang Y 《生理学报》2008,60(2):161-168
本文利用冠脉结扎/放松方法和Langendorff灌注技术,建立在体和离体大鼠心脏缺血/再灌注(ischemia/reperfusion,I/R)损伤模型,探讨白藜芦醇甙(polydatin)对大鼠I/R心肌损伤的保护作用及其机制.观察白藜芦醇甙对缺血和再灌注心律失常、心肌梗死面积、心脏收缩功能、心肌超氧化物歧化酶(superoxide dismutase,SOD)活性、丙二醛(malondialdehyde,MDA)含量、NO含量以及一氧化氮合酶(nitric oxide synthase,NOS)活性的影响.结果显示:与对照组相比,白藜芦醇甙组大鼠缺血和再灌注心律失常明显降低(P<0.05,P<0.01);心肌梗死面积显著减少(P相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号