首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The neuropeptide content of nerve fibers associated with submucosal arteries in the small intestine of guinea pigs was studied in whole-mount preparations using immunohistochemical methods. Tissues were obtained from normal animals or animals in which the small intestine had been extrinsically denervated. In normal animals, submucosal arteries are innervated by extrinsic sensory nerve fibers which contain both substance P and calcitonin gene-related peptide, and by sympathetic noradrenergic nerve fibers. In preparations obtained from animals 5–9 days after denervation, nerve fibers which contained substance P without detectable calcitonin gene-related peptide were associated with a few submucosal arteries. Nerve fibers which contained vasoactive intestinal peptide were also associated with some arteries. By 42–48 days after extrinsic denervation, substance P-containing fibers (without calcitonin gene-related peptide) and vasoactive intestinal peptide-containing fibers were associated with nearly every blood vessel. The extrinsic sympathetic nerve fibers did not regenerate during the course of this study. The nerve fibers associated with submucosal arteries in denervated tissues were not sensitive to capsaicin treatment.The alteration in the innervation of submucosal arterioles that follows extrinsic denervation of the gut may reflect either an increase in the neuropeptide content of the fibers, synthesis of a new peptide, or an increase in the number of fibers as a result of axonal sprouting.  相似文献   

2.
The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 +/- 1.2 vs. 49 +/- 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 +/- 0.11 vs. 1.3 +/- 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 +/- 1.0 and 34 +/- 0. 8 vs. 47 +/- 1.3 and 43 +/- 1.2%; frequency, 1.4 +/- 0.07 and 1.6 +/- 0.06 vs. 1.1 +/- 0.14 and 1.0 +/- 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.  相似文献   

3.
Cannabinoid receptors (CBR) are located on cholinergic neurons in the brain stem, stomach, and colon. CBR stimulation inhibits motility in rodents. Effects in humans are unclear. Dronabinol (DRO), a nonselective CBR agonist, inhibits colonic motility and sensation. The aim of this study was to compare effects of DRO and placebo (PLA) on colonic motility and sensation in healthy volunteers. Fifty-two volunteers were randomly assigned (double-blind) to a single dose of 7.5 mg DRO or PLA postoperative with concealed allocation. A balloon-manometric assembly placed into the descending colon allowed assessment of colonic compliance, motility, tone, and sensation before and 1 h after oral ingestion of medication, and during fasting, and for 1 h after 1,000-kcal meal. There was an overall significant increase in colonic compliance (P = 0.045), a borderline effect of relaxation in fasting colonic tone (P = 0.096), inhibition of postprandial colonic tone (P = 0.048), and inhibition of fasting and postprandial phasic pressure (P = 0.008 and 0.030, respectively). While DRO did not significantly alter thresholds for first gas or pain sensation, there was an increase in sensory rating for pain during random phasic distensions at all pressures tested and in both genders (P = 0.024). In conclusion, in humans the nonselective CBR agonist, DRO, relaxes the colon and reduces postprandial colonic motility and tone. Increase in sensation ratings to distension in the presence of relaxation of the colon suggests central modulation of perception. The potential for CBR to modulate colonic motor function in diarrheal disease such as irritable bowel syndrome deserves further study.  相似文献   

4.
Summary Nerve fibers containing substance P, VIP, enkephalin or somatostatin are numerous in the porcine gut wall. They are particularly numerous in the submucosal and myenteric plexuses where peptide-containing cell bodies are also observed. Peptide-containing nerve fibers occur also in the vagus nerves, suggesting that the gut receives an extrinsic supply of peptidergic nerves. The extrinsic contribution to the peptide-containing nerve supply of the gut wall has not yet been quantitatively assessed. In an attempt to clarify this question pigs were subjected to bilateral subdiaphragmatic vagotomy. Another group of animals was subjected to complete extrinsic denervation by autotransplantation of a jejunal segment. The pigs were killed at various time intervals after the operations; the longest time interval studied was four months. Following vagotomy the innervation pattern of the jejunum appeared completely unaffected. Following complete extrinsic denervation the adrenergic nerve fibers disappeared, while peptide-containing and acetylcholinesterase-positive nerve fibers remained apparently unaltered. This was confirmed chemically in the case of substance P.The motor activity of smooth muscle from the jejunum was studied in vitro. At low stimulation frequencies the smooth muscle from control jejunum responded by relaxation; upon cessation of stimulation a contraction occurred. With increasing stimulation frequencies the duration of the relaxation decreased; at high frequency stimulation only a contraction was recorded. In the autotransplant low frequency stimulation induced no or only a weak relaxation; high frequency stimulation induced contraction. After cholinergic and adrenergic blockade, the muscle responded with relaxation at all frequencies; the response was similar in innervated and denervated specimens. On the whole, the effects of extrinsic denervation on the motor activity of smooth muscle from porcine jejunum were minor, possibly reflecting the high degree of autonomy of the gut.  相似文献   

5.
Alterations in normal intestinointestinal reflexes may be important contributors to the pathophysiology of irritable bowel syndrome (IBS). Our aims were to compare the rectal tonic responses to colonic distension in female IBS patients with predominant constipation (IBS-C) and with predominant diarrhea (IBS-D) to those in healthy females, both fasting and postprandially. Using a dual barostat assembly, 2-min colonic phasic distensions were performed during fasting and postprandially. Rectal tone was recorded before, during, and after the phasic distension. Colonic compliance and colonic sensitivity in response to the distension were also evaluated fasting and postprandially. Eight IBS-C patients, 8 IBS-D patients, and 8 age- and sex-matched healthy subjects (group N) participated. The fasting increments in rectal tone in response to colonic distension in both IBS-C (rectal balloon volume change -4.6 +/- 6.1 ml) and IBS-D (-7.9 +/- 4.9 ml) were significantly reduced compared with group N (-34 +/- 9.7 ml, P = 0.01). Similar findings were observed postprandially (P = 0.02). When adjusted for the colonic compliance of individual subjects, the degree of attenuation in the rectal tonic response in IBS compared with group N was maintained (fasting P = 0.007; postprandial P = 0.03). When adjusted for colonic sensitivity there was a trend for the attenuation in the rectal tonic response in IBS patients compared with group N to be maintained (fasting P = 0.07, postprandial P = 0.08). IBS patients display a definite attenuation of the normal increase in rectal tone in response to colonic distension (colorectal reflex), fasting and postprandially. Alterations in colonic compliance and sensitivity in IBS are not likely to contribute to such attenuation.  相似文献   

6.
The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish.  相似文献   

7.
The cholinesterase inhibitor neostigmine indirectly stimulates muscarinic M(1)/M(2)/M(3) receptors, thereby reducing colonic distension in acute colonic pseudo-obstruction. We investigated the dose-response profile for the colonic sensorimotor effects of neostigmine and bethanechol, a direct muscarinic M(2)/M(3) agonist in humans. A barostat-manometric assembly recorded phasic pressures, tone, and pressure-volume relationships (compliance) in the descending colon and rectum of 30 healthy subjects who received intravenous neostigmine (0.25, 0.75, or 1.5 mg; n = 15) or subcutaneous bethanechol (2.5, 5, or 10 mg; n = 15). Sensation to luminal distension was also assessed. Thereafter, the effects of neostigmine and bethanechol on colonic transit (geometric center) were compared with those of saline by scintigraphy in 21 subjects. Both drugs increased colonic phasic pressure activity, reduced rectal compliance, and enhanced urgency during rectal distension. Neostigmine also reduced colonic and rectal balloon volumes, reflecting increased tone by an average of 12% and 25% for the highest dose, respectively. Only neostigmine reduced colonic compliance, accelerated colonic transit [mean geometric center at 90 min 2.5 vs. 1.0 (placebo)], and increased pain perception during colonic distension. We conclude that neostigmine has more prominent colonic motor and sensory effects than bethanechol. Moreover, neostigmine induces coordinated colonic propulsion, perhaps by stimulating muscarinic M(1) receptors in the myenteric plexus.  相似文献   

8.
Pregabalin, an α2δ ligand, is used clinically to treat somatic pain. A prior study suggested that pregabalin reduces distension-induced pain while increasing rectal compliance. We aimed to quantify effects of pregabalin on colonic sensory and motor functions and assess relationships between sensory effects and colonic compliance. We conducted a randomized, double-blind, placebo-controlled, parallel-group study of a single oral administration of 75 or 200 mg of pregabalin in 62 healthy adults (aged 18-75 yr). Subjects underwent left colon intubation. We assessed "stress-arousal symptoms", compliance, sensation thresholds, sensation ratings averaged over four levels of distension, fasting and postprandial colonic tone, and phasic motility index (MI). Analysis of covariance (adjusted for age, sex, body mass index, and corresponding predrug response) and proportional hazard models were used. There were no clinically important differences among treatment groups for demographics, predrug compliance, tone, MI, and sensation. Treatment was associated with reduced energy and increased drowsiness but no change in tension or relaxation. Sensation ratings averaged over the four distension levels were lower for gas sensation [overall effect P = 0.14, P = 0.05 (pregabalin 200 mg vs. placebo)] and for pain sensation [overall effect P = 0.12, P = 0.04 (pregabalin 200 mg vs. placebo)]. The magnitude of the effect of 200 mg of pregabalin relative to placebo is on average a 25% reduction of both gas and pain sensation ratings. Pregabalin did not significantly affect colonic compliance, sensation thresholds, colonic fasting tone, and MI. Thus 200 mg of pregabalin reduces gas and pain sensation and should be tested in patients with colonic pain.  相似文献   

9.
Colonic transit is slowed in patients with disordered rectal evacuation, but the mechanism of this phenomenon is unclear. Our objective was to investigate rectocolonic inhibitory reflexes in humans to provide potential insight into patients with obstructed defecation. In 30 healthy subjects, a barostat-manometric assembly recorded colonic tone and phasic activity in the descending colon during rectal distension and recorded rectal tone during colonic distension. Phasic distensions were 8, 16, and 32 mmHg above balloon operating pressure, and staircase inflations were comprised of balloon inflation then deflation in 2-mmHg increments at 30-s intervals from 0 to 36 mmHg. Colonic balloon volumes increased to a similar extent during phasic rectal distensions 8, 16, and 32 mmHg above operating pressure, reflecting reduced colonic tone; balloon volumes also increased and phasic pressure activity decreased during staircase rectal distensions. In contrast, rectal balloon volume declined, reflecting increased tone during phasic and staircase colonic distensions. Thus rectal distension inhibited colonic motor activity, indicative of a viscerovisceral inhibitory reflex.  相似文献   

10.
Nitrergic innervation and nitrergic epithelioid cells were studied in arteriovenous anastomoses of the tongue, ear, eye, and glomus organ of the finger in different species (rat, rabbit, dog, and man), by means of immunohistochemistry for nitric oxide synthase and enzyme histochemistry utilizing the catalytic activity of this enzyme (the NADPH-diaphorase reaction). Nitrergic perivascular fibers of the tongue were concentrated along the arterial tree and were maximal at the arteriovenous anastomoses in all species. Generally, fewer fibers were located around comparable segments of the episcleral eye vasculature. Only a few nitrergic fibers were found in the canine and rabbit ear, and in the glomus organ of the human finger; however, epithelioid cells in the tunica media of arteriovenous anastomoses of these organs were NADPH-diaphorase-positive and were moderately immunoreactive for nitric oxide synthase. In the epithelioid cells, the reaction product of the NADPH-diaphorase could also be demonstrated by transmission electron microscopy. The epithelioid cells were negative for the panneural and neuroendocrine marker PGP 9.5 confirming the myocytotic nature of these nitrergic cells. Thus, nitric oxide might play a role in mediating the vessel tone of arteriovenous anastomoses via nitrergic nerves or epithelioid cells.  相似文献   

11.
The objective of this study was to examine the effects of two different denervation procedures on the distribution of nerve fibers and neurotransmitter levels in the rat jejunum. Extrinsic nerves were eliminated by crushing the mesenteric pedicle to a segment of jejunum. The myenteric plexus and extrinsic nerves were eliminated by serosal application of the cationic surfactant benzyldimethyltetradecylammonium chloride (BAC). The effects of these two denervation procedures were evaluated at 15 and 45 days. The level of norepinephrine in whole segments of jejunum was initially reduced by more than 76% after both denervation procedures, but by 45 days the level of norepinephrine was the same as in control tissue. Tyrosine hydroxylase (nor-adrenergic nerve marker) immunostaining was absent at 15 days, but returned by 45 days. However, the pattern of noradrenergic innervating axons was altered in the segment deprived of myenteric neurons. Immunohistochemical studies showed protein gene product 9.5 (PGP 9.5)-immunoreactive fibers in whole-mount preparations of the circular smooth muscle in the absence of the myenteric plexus and extrinsic nerves. At 45 days, the number of nerve fibers in the circular smooth muscle increased. Vasoactive intestinal polypeptide (VIP)-immunoreactive fibers, a subset of the PGP 9.5 nerve fibers, were present in the circular smooth muscle at both time points examined. Choline acetyltransferase (CAT) activity and VIP and leucine enkephalin levels were measured in separated smooth muscle and submucosa-musosal layers of the denervated jejunum. VIP and leucine-enkephalin levels were no different from control in tissue that was extrinsically denervated alone. However, the levels of these peptides were elevated two-fold in the smooth muscle 15 and 45 days after myenteric and extrinsic denervation. In the submucosa-mucosa, VIP and leucine enkephalin levels also were elevated two-fold at 15 days, but comparable to control at 45 days. CAT activity was equal to control in the smooth muscle but elevated two-fold in the submucosa-mucosa at both times. These results provide evidence for innervation of the circular smooth muscle by the submucosal plexus. Moreover, these nerve fibers originating from the submucosal plexus proliferate in the absence of the myenteric plexus. Furthermore, the myenteric neurons appear to be essential for normal innervation of the smooth muscle by the sympathetic nerve fibers. It is speculated that the sprouting of the submucosal plexus induced by myenteric plexus ablation is mediated by increased production of trophic factors in the hyperplastic smooth muscle.  相似文献   

12.
D Goldman  J Staple 《Neuron》1989,3(2):219-228
In adult vertebrate skeletal muscle acetylcholine receptors are localized to the neuromuscular junction. Upon denervation, this distribution changes, with new receptors appearing in extrajunctional regions of the muscle fiber. The location of acetylcholine receptors in innervated or denervated muscle may result, in part, from the distribution of their RNAs. This was tested by assaying for receptor RNAs in junctional and extrajunctional regions of innervated and denervated rat soleus muscle using in situ hybridization and RNAase protection assays. These experiments showed alpha, beta, and delta subunit RNAs concentrated beneath the endplates of innervated muscle fibers. Following denervation, there was an unequal distribution of receptor RNAs along the muscle fiber, with highest levels occurring in extrajunctional regions near the endplate. These data are consistent with a nonuniform pattern of gene expression in adult skeletal muscle fibers.  相似文献   

13.
We investigated the distribution and function of cannabinoid (CB)(1) receptors in the submucosal plexus of the guinea pig ileum. CB(1) receptors were found on both types of submucosal secretomotor neurons, colocalizing with VIP and neuropeptide Y (NPY), the noncholinergic and cholinergic secretomotor neurons, respectively. CB(1) receptors colocalized with transient receptor potential vanilloid-1 receptors on paravascular nerves and fibers in the submucosal plexus. In the submucosal ganglia, these nerves were preferentially localized at the periphery of the ganglia. In denervated ileal segments, CB(1) receptor immunoreactivity in submucosal neurons was not modified, but paravascular and intraganglionic fiber staining was absent. Short-circuit current (I(sc)) was measured as an indicator of net electrogenic ion transport in Ussing chambers. In the ion-transport studies, I(sc) responses to capsaicin, which activates extrinsic primary afferents, and to electrical field stimulation (EFS) were reduced by pretreatment with the muscarinic antagonist atropine, abolished by tetrodotoxin, but were unaffected by VIP receptor desensitization, hexamethonium, alpha-amino-3-hydroxy-5-methlisoxazole-4-proprionic acid, or N-methyl-d-aspartate glutamate receptor antagonists. The responses to capsaicin and EFS were reduced by 47 +/- 12 and 30 +/- 14%, respectively, by the CB(1) receptor agonist WIN 55,212-2. This inhibitory effect was blocked by the CB(1) receptor antagonist, SR 141716A. I(sc) responses to forskolin or carbachol, which act directly on the epithelium, were not affected by WIN 55,212-2. The inhibitory effect of WIN 55,212-2 on EFS-evoked secretion was not observed in extrinsically denervated segments of ileum. Taken together, these data show cannabinoids act at CB(1) receptors on extrinsic primary afferent nerves, inhibiting the release of transmitters that act on cholinergic secretomotor pathways.  相似文献   

14.
This study evaluated whether increased release of nitric oxide (NO) from the nitrergic component of the nonadrenergic, noncholinergic (NANC) nerves may be partly responsible for the decrease in gastrointestinal motility observed during pregnancy. Segments of fundal strip, ileum, and colon were obtained from nonpregnant rats, rats in midpregnancy (days 9-11), and rats in late pregnancy (days 18-20). NANC activity was studied by assessing changes in tone after application of electric field stimulation (EFS). The role of NO was determined by observing the effects of EFS in the presence and absence of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) and the reversibility of the effects of L-NAME by L-arginine. The magnitude of change in cGMP levels in the tissues after application of EFS was also assessed. Our studies indicate that there was increased magnitude of relaxation of isolated strips of rat gastric fundus and rat colon, after application of EFS to tissues obtained only from animals in late pregnancy. These results paralleled the changes in cGMP levels in tissues. NOS activity in the gastric fundus was significantly increased in animals in late pregnancy compared with nonpregnant controls. Our studies suggest that the delay in gastric emptying and increase in colonic transit time observed in rats during pregnancy may be caused in part by increased activity of the nitrergic component of the NANC nerves innervating these organs.  相似文献   

15.
Nitric oxide synthase in the rat carotid body and carotid sinus   总被引:5,自引:0,他引:5  
The participation of nitric oxide synthase (NOS) in the innervation of the rat carotid body and carotid sinus was investigated by means of NADPH-diaphorase histochemistry and NOS immunohistochemistry using antisera raised against purified neuronal NOS and a synthetic tridecapeptide. NOS was detected in 23% of neurons at the periphery of the carotid bodies. Some negative neurons were surrounded by NOS-positive terminals. NOS-containing varicose nerve fibres innervated the arterial vascular bed and, to a lesser extent, the islands of glomus cells. These fibres persisted after transection of the carotid sinus nerve and are probably derived from intrinsic neurons. Large NOS-positive axonal swellings in the wall of the carotid sinus were absent after transection of the sinus nerve, indicating their sensory origin. The results suggest a neuronal nitrergic control of blood flow, neuronal activity and chemoreception in the carotid body, and an intrinsic role of NO in the process of arterial baroreception.  相似文献   

16.
R D Rothstein  A Ouyang 《Life sciences》1989,45(16):1475-1482
Neurotensin, a neuropeptide identified in the distal small intestine, plays an unclear role in ileocecal sphincter regional function. The purpose of this study was to determine the effect and mechanism of action of neurotensin on the feline ileocecal sphincter (ICS), proximal colon, and distal ileum. Intraluminal pressures were recorded at these sites in anesthetized cats after superior mesenteric artery injection of neurotensin. Dose dependent tonic and phasic contractions were seen at all sites. Peak pressure responses were seen at the maximal dose used and were greater for the ICS than the distal ileum and the proximal colon. The threshold dose for peak pressures for neurotensin was 0.05 microgram/kg for all sites with the maximal peak pressures occurring at the maximal dose used (100 micrograms/kg). The motility index (MI [number of contractions x mean amplitude of contractions]) was determined for three minutes before and after neurotensin injection. The change in the motility index after neurotensin increased at doses above 0.05 micrograms/kg for the ileum and the ICS and 0.25 microgram/kg for the colon. Maximal responses for the motility index were seen at 1 microgram/kg for the distal ileum, and 10 micrograms/kg for the ICS and the proximal colon, with the greatest response seen at the ICS. Neurotensin-induced ICS relaxation was seen at 1 microgram/kg (50 +/- 10%, p less than 0.01) in 33% of cats. The contractile responses of the distal ileum and the proximal colon were not inhibited by naloxone, trimethaphan, tetrodotoxin, or atropine. The ICS contractile response was decreased by tetrodotoxin by 53%, p less than 0.05. The alpha 2 antagonist, yohimbine reduced the neurotensin induced ICS contraction from 31.6 +/- 3.4 to 21.9 +/- 3.3 mm Hg, p less than 0.05. Prazosin had no effect on neurotensin-induced contractions. In the presence of cimetidine and diphenhydramine, trimethaphan did not affect the neurotensin-induced contractile response at all three sites. However, neurotensin inhibited contractions induced by trimethaphan alone at all three sites. Conclusions: 1. Neurotensin causes a dose-dependent contractile response at the distal ileum, ICS, and proximal colon. 2. Neurotensin has an inhibitory effect at all three sites. 3. The contractile response at the distal ileum and the proximal colon is mediated via smooth muscle receptors. 4. The contractile response of neurotensin at the ICS is mediated partly via alpha 2 receptors and partly via smooth muscle receptors.  相似文献   

17.
The aim of this study was to explore the myenteric mechanisms of control of human esophageal motility and the effect of nitrergic and nonnitrergic neurotransmitters. Human circular esophageal strips were studied in organ baths and with microelectrodes. Responses following electrical field stimulation (EFS) of enteric motoneurons (EMNs) or through nicotinic acetylcholine receptors were compared in the esophageal body (EB) and in clasp and sling regions in the lower esophageal sphincter (LES). In clasp LES strips: 1) sodium nitroprusside (1 nM to 100 μM), adenosine-5'-[β-thio]diphosphate trilithium salt (1-100 μM), and vasoactive intestinal peptide (1 nM to 1 μM) caused a relaxation; 2) 1 mM N(ω)-nitro-L-arginine (L-NNA) shifted the EFS "on"-relaxation to an "off"-relaxation, partly antagonized by 10 μM 2'-deoxy-N(6)-methyladenosine 3',5'-bisphosphate tetrasodium salt (MRS2179) or 10 U/ml α-chymotrypsin; and 3) nicotine-relaxation (100 μM) was mainly antagonized by L-NNA, and only partly by MRS2179 or α-chymotrypsin. In sling LES fibers, EFS and nicotine relaxation was abolished by L-NNA. In the EB, L-NNA blocked the latency period, and MRS2179 reduced "off"-contraction. The amplitude of cholinergic contraction decreased from the EB to both LES sides. EFS induced a monophasic inhibitory junction potential in clasp, sling, and EB fibers abolished by L-NNA. Our study shows a regional specialization to stimulation of EMNs in the human esophagus, with stronger inhibitory responses in clasp LES fibers and stronger cholinergic excitatory responses in the EB. Inhibitory responses are mainly triggered by nitrergic EMNs mediating the inhibitory junction potentials in the LES and EB, EFS on-relaxation in clasp and sling LES sides, and latency in the EB. We also found a minor role for purines (through P2Y(1) receptors) and vasoactive intestinal peptide-mediating part of nonnitrergic clasp LES relaxation.  相似文献   

18.
Summary Tissue composition, membrane potentials and cellular activity of potassium, sodium and chloride have been measured in innervated and denervated rat skeletal muscles incubatedin vitro. After denervation for 3 days, tissue water, sodium and chloride were increased but cellular potassium content and measured activity were little affected, despite a decrease of 16 mV in resting membrane potential which would have necessitated a decrease in cellular potassium activity of almost 50% were potassium distributed at electrochemical equilibrium. These findings, therefore, preclude a decreased electrochemical potential gradient for potassium as the cause of the membrane depolarization characteristic of denervated muscle fibers. Analysis of the data excludes an important contribution of rheogenic sodium transport to the resting potential of innervated muscles. These results strongly support the hypothesis that the decreased membrane potential in denervated fibers reflects a relative increase in the membrane permeability to sodium.  相似文献   

19.
The aim of the present study was to analyze the neuromodulation of rectoanal reflex activity by lumbar sympathetic nerves in guinea pigs. The mechanical activities of the rectum were recorded with a balloon connected to a pressure transducer, and those of the internal anal sphincter (IAS) were recorded with a custom-made strain gauge force transducer. Gradual and sustained rectal distension evoked the rectoanal reflex, causing cholinergic contractions of the rectum and synchronous nitrergic relaxations of the IAS. Section of the lumbar colonic nerves enhanced both rectal contractions and IAS relaxations. Section of the 13th thoracic cord abolished both rectal contractions and IAS relaxations, but section of the lumbar colonic nerves restored them. Lumbar sympathectomy and pithing sacral cords greatly diminished these rectal contractions and IAS relaxations, but the intrinsic reflex component remained. NG-nitro-L-arginine methyl ester enhanced the intrinsic reflex-mediated contraction of the rectum and abolished reflex-mediated relaxation of the IAS and converted into cholinergic contractions. The present results indicate that the extrinsic lumbar inhibitory outflow causes marked inhibition of the rectoanal reflex via the lumbar colonic nerves.  相似文献   

20.
In partially denervated rodent muscle, terminal Schwann cells (TSCs) located at denervated end plates grow processes, some of which contact neighboring innervated end plates. Those processes that contact neighboring synapses (termed "bridges") appear to initiate nerve terminal sprouting and to guide the growth of the sprouts so that they reach and reinnervate denervated end plates. Studies conducted prior to knowledge of this potential involvement of Schwann cells showed that direct muscle stimulation inhibits terminal sprouting following partial denervation (Brown and Holland, 1979). We have investigated the possibility this inhibition results from an alteration in the growth of TSC processes. We find that stimulation of partially denervated rat soleus muscle does not alter the length or number of TSC processes but does reduce the number of TSC bridges. Stimulation also reduces the number of TSC bridges that form between end plates during reinnervation of a completely denervated muscle. The nerve processes ("escaped fibers") that normally grow onto TSC processes during reinnervation are also reduced in length. Therefore, stimulation alters at least two responses to denervation in muscles: (1) the ability of TSC processes to form or maintain bridges with innervated synaptic sites, and (2) the growth of axons along processes extended by TSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号