首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytokines are proteins that mediate communication between cells of the immune system as well as certain other non-immune host cells. These proteins are produced by many cell types and they mediate immune and inflammatory responses. However, the direct site analysis of these critical proteins is hampered by the lack of site-specific tools available for such direct measurements. In this study, both in vitro and in vivo microdialysis sampling of different cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], interleukin-6 [IL-6], IL-12p70, and macrophage chemoattractant protein-1 [MCP-1]) was performed. A mouse model of bacterial lipopolysaccharide (LPS) administration and response pattern was used for in vivo studies. Three cytokines, TNF-alpha, IL-6, and MCP-1 were quantified in the serum from mice given LPS. In vivo studies demonstrated the ability to monitor increasing levels of these cytokines (TNF-alpha, IL-6, and MCP-1) via microdialysis probes placed in the peritoneal cavity of mice given LPS. All three cytokines were quantified simultaneously in 15 muL of dialysate using a multiplexed bead-based immunoassay for flow cytometry. The detected dialysate cytokine concentrations varied between 200 pg/mL and 1500 pg/mL for TNF-alpha, between 600 pg/mL and 3000 pg/mL for MCP-1, and between 2700 pg/mL and more than 5000 pg/mL for IL-6. The detected serum cytokine concentrations ranged from 5700 pg/mL to 35,000 pg/mL for TNF-alpha, from 40,000 pg/mL to 65,000 pg/mL for MCP-1, and greater than than 100,000 pg/mL for IL-6. This work demonstrates that microdialysis sampling can be used in vivo to collect temporal profiles of cytokine production.  相似文献   

2.
Haskó  György 《Neurochemical research》2001,26(8-9):1039-1044
The sympathetic nervous system plays a central role in establishing communication between the central nervous system and the immune system during inflammation. Inflammation activates the sympathetic nervous system, which causes release of the transmitters of the sympathetic nerv-ous system in the periphery. The transmitters of the sympathetic nervous system are the cate-cholamines noradrenaline and adrenaline and the purines ATP, adenosine, and inosine. Once these transmitters are released, they stimulate both presynaptic receptors on nerve terminals and post-synaptic receptors on immune cells. The receptors that are sensitive to catecholamines are termed adrenoceptors, whereas the receptors that bind purines are called purinoceptors. Stimulation of the presynaptic receptors exerts an autoregulatory effect on the release of transmitters. Ligation of the postsynaptic receptors on inflammatory cells modulates the inflammatory ac-tivities of these cells. The present review summarizes some of the most important aspects of the current state of knowledge about the interactions between the sympathetic nervous system and the immune system during inflammation with a special emphasis on the role of adreno and purinoceptors.  相似文献   

3.
4.
It is believed that an inflammation-induced activation of the CNS leads to an inhibition of overshooting immune responses to prevent extensive local cytokine secretion. However, immunosuppression by the sympathetic nervous system may be unfavorable when bacteria are present locally and when TNF-alpha is necessary to overcome infection. We now report in a superfusion model, using mouse spleen slices, that although local Pseudomonas aeruginosa increased splenic TNF-alpha and IL-6 secretion severalfold over basal levels, electrically released neurotransmitters attenuated cytokine secretion to similar basal level as under bacteria-free conditions. Bacteria reversed noradrenergic inhibitory effector mechanisms: Under bacteria-free conditions, TNF-alpha secretion was very low and IL-6 secretion was mainly inhibited by alpha2-adrenoreceptor ligation. In the presence of bacteria, TNF-alpha and IL-6 secretion were high and IL-6 secretion was mainly inhibited by beta-adrenoreceptor ligation. The alpha- to beta-adrenoswitch of IL-6 inhibition in the presence of bacteria was mediated by the prior adrenergic regulation of TNF-alpha. In vivo, chemical abrogation of sympathetic inhibition reduced accumulation of bacteria in the spleen, which depended at least in part on TNF-alpha. This suggests that activation of the sympathetic nervous system may be a forerunner for accumulation of bacteria in tissue and consecutively sepsis due to intensified inhibition of TNF-alpha secretion.  相似文献   

5.
Inactivated parapoxvirus ovis (Orf virus; PPVO) recently displayed strong immunostimulating and modulating capacities in several animal models for acute and chronic virus infections through the induction of gamma interferon (IFN-gamma) as a key mediator of antiviral activity. The data presented in this work demonstrate that inactivated PPVO has strong effects on cytokine secretion by human immune cells, including the upregulation of inflammatory and Th1-related cytokines (IFN-gamma, tumor necrosis factor alpha [TNF-alpha], interleukin 6 [IL-6], IL-8, IL-12, and IL-18) as well as anti-inflammatory and Th2-related cytokines (IL-4, IL-10, and IL-1 receptor antagonist [IL-1ra]). Studies on the mechanism of action revealed virus particles to be the effective components of the preparation. The virus particles activate monocytes or other antigen-presenting cells (APC), e.g., plasmacytoid dendritic cells, through signaling over CD14 and a Toll-like receptor and the intracellular presence of certain PPVO-specific components. The activation of monocytes or APC is followed by the release of early proinflammatory cytokines (TNF-alpha, IL-6, and IL-8) as well as the Th1-related cytokines IL-12 and IL-18. Both IL-18 and IL-12 are involved in PPVO-mediated IFN-gamma release by T cells and/or NK cells. The proinflammatory response is accompanied by the induction of anti-inflammatory and Th2-related cytokines (IL-4, IL-10, and IL-1ra), which exert a limiting efffect on the inflammatory response induced by PPVO. We conclude that the induction of a natural immune response with physiologically significant amounts of different cytokines and with antiviral potential might provide advantages over existing antiviral immunotherapies.  相似文献   

6.
Astrocytes have the capacity to secrete or respond to a variety of cytokines including IL-1, IL-6, IL-3, and TNF-alpha. In this study, we have examined the capacity of astrocytes to secrete TNF-alpha in response to a variety of biologic stimuli, particularly cytokines such as IL-1 and IFN-gamma, which are known to be present in the central nervous system during neurologic diseases associated with inflammation. Rat astrocytes do not constitutively produce TNF-alpha, but have the ability to secrete TNF-alpha in response to LPS, and can be primed by IFN-gamma to respond to a suboptimal dose of LPS. IFN-gamma and IL-1 beta alone do not induce TNF-alpha production, however, the combined treatment of IFN-gamma and IL-1 beta results in a striking synergistic effect on astrocyte TNF-alpha production. Astrocyte TNF-alpha protein production induced by a combined treatment of either IFN-gamma/LPS or IFN-gamma/IL-1 beta occurs in a dose- and time-dependent manner, and appears to require a "priming signal" initiated by IFN-gamma, which then renders the astrocyte responsive to either a suboptimal dose of LPS or IL-1 beta. Astrocyte TNF-alpha production by IFN-gamma/LPS stimulation can be inhibited by the addition of anti-rat IFN-gamma antibody, whereas IFN-gamma/IL-1-induced TNF-alpha production is inhibited by antibody to either IFN-gamma or IL-1 beta. Polyclonal antisera reactive with mouse macrophage-derived TNF-alpha neutralized the cytotoxicity of IFN-gamma/LPS and IFN-gamma/IL-1 beta-induced astrocyte TNF-alpha, demonstrating similarities between these two sources of TNF-alpha. We propose that astrocyte-produced TNF-alpha may have a pivotal role in augmenting intracerebral immune responses and inflammatory demyelination due to its diverse functional effects on glial cells such as oligodendrocytes and astrocytes themselves.  相似文献   

7.
The aim of the study was to find out whether prolonged exercise influences plasma adrenomedullin (ADM) concentration and whether it is related to the hormonal, metabolic and cardiovascular changes. Eighteen healthy subjects (age 25+/-1 yrs) were submitted to cycle exercise for 90 min at 70% of maximal oxygen uptake. Heart rate (HR) and blood pressure (BP) were measured continously. Before, at 30(th) min, and at the end of exercise venous blood samples were taken for [ADM], noradrenaline [NA], adrenaline [A], atrial natriuretic peptide [ANP], plasma renin activity PRA, interleukin-6 [IL-6] and lactate [LA] determination. Significant increases in plasma ADM and IL-6 were found at 90(th) min whereas other hormones were elevated already at 30(th) min of exercise. Positive correlations were ascertained between [ADM] and [NA] (r=0.47), [ANP] (r=0.35) or [IL-6] (r=0.35) and between exercise-induced increases in [ADM] and [NA] (r=0.38). PRA correlated positively with [NA] and [ANP]. Negative correlation was found between plasma [ADM] and diastolic BP. The present data suggest that increase in sympathetic nervous activity and cytokine induction during prolonged exercise may be involved in plasma ADM release and that increase in ADM and ANP secretion may be a compensatory mechanism against further elevation of blood pressure.  相似文献   

8.
The TLR5 agonist flagellin induces innate and adaptive immune responses in a MyD88-dependent manner and is under development as a vaccine adjuvant. In vitro studies indicate that, compared with other bacteria-derived adjuvants, flagellin is a very potent activator of proinflammatory gene expression and cytokine production from cells of nonhemopoietic origin. However, the role of nonhemopoietic cells in promoting flagellin-induced immune responses in vivo remains unclear. To investigate the relative contributions of the nonhemopoietic (radioresistant) and the hemopoietic (radiosensitive) compartments, we measured both innate and adaptive immune responses of flagellin-treated MyD88 radiation bone marrow chimeras. We observed that radiosensitive and radioresistant cells played distinct roles in the innate response to flagellin, with the radiosensitive cells producing the majority of the TNF-alpha, IL-12, and IL-6 cytokines and the radioresistant cells most of the KC, IP-10, and MCP-1 cytokines. Direct activation of either compartment alone by flagellin initiated dendritic cell costimulatory molecule up-regulation and induced a significant humoral immune response to the protein itself as well as to coinjected OVA. However, robust humoral responses were only observed when MyD88 was present in both cell compartments. Further studies revealed that hemopoietic and nonhemopoietic expression of the cytokines TNF-alpha and IL-6, but not IL-1, played an important role in promoting flagellin-induced Ab responses. Thus, in vivo both radioresistant and hemopoietic cells play key nonredundant roles in mediating innate and adaptive immune responses to flagellin.  相似文献   

9.
Abstract

Links between the nervous and immune systems are suggested by the behavioural conditioning of Immunosuppression, the effects of brain lesions and stress on immune responses, and physlogical and chemical changes in the brain during immune responses. These links probably include glucocorticoids secreted from the adrenal gland, catecholamines and neuropeptides secreted by sympathetic terminals and the adrenal medulla, certain pituitary hormones, and polypeptides produced by cells of the immune system. The effect of glucocorticoids is not exclusively immunosuppressive, nor is it adequate to explain all the effects of stress. In vitro endogenous opiates facilitate lymphocyte proliferation and natural killer (NK) cell activity, but in vivo opiates appear to inhibit immune responses and impair tumour rejection. Increases of circulating glucocorticoids after infection and an apparent activation of cerebral catecholaminergic cells indicate that challenges to the immune system are interpreted physiologically as stressors. Moreover, they suggest that the brain may be able to monitor the progress of immune responses. Certain protein factors produced by the thymus gland (thymosins) may be able to counter stress-induced deficits in immunological responses.  相似文献   

10.
Although the sympathetic neurons innervating the heart are exposed to the inflammatory cytokines cardiotrophin-1 (CT-1), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFalpha) after myocardial infarction, the effects of these cytokines on noradrenergic function are not well understood. We used cultured sympathetic neurons to investigate the effects of these cytokines on catecholamine content, the tyrosine hydroxylase co-factor, tetrahydrobiopterin (BH4), and norepinephrine (NE) uptake. CT-1, but not IL-6 or TNFalpha, suppressed NE uptake and catecholamines in these neurons, whereas CT-1 and, to a lesser extent, IL-6 decreased BH4 content. CT-1 exerted these effects by decreasing tyrosine hydroxylase, GTP cyclohydrolase (GCH) and NE transporter mRNAs, while IL-6 lowered only GCH mRNA. The neurons innervating the heart are also activated by the central nervous system after myocardial infarction. We examined the combined effect of depolarization and cytokines on noradrenergic function. In CT-1-treated cells, depolarization caused a small increase in BH4 and NE uptake, and a large increase in catecholamines. These changes were accompanied by increased TH, GCH and NE transporter mRNAs. CT-1 and depolarization regulate expression of noradrenergic properties in an opposing manner, and the combined treatment results in elevated cellular catecholamines and decreased NE uptake relative to control cells.  相似文献   

11.
The nervous and the immune systems share several molecules that control their development and function. We studied the temporal and spatial distribution of the immunoreactivity of two acute-phase cytokines, TNF-alpha and IL-1beta, in the developing sheep neocortex and compared it with the well-described distribution of fetuin, a fetal glycoprotein also known to modulate the production of cytokines by lipopolysaccharide (LPS)-stimulated monocytes and macrophages. TNF-alpha was present first at embryonic day 30 (E30) (term is 150 days in sheep) as a faint band of immunoreactivity between the ventricular zone and the primordial plexiform layer (preplate). IL-1beta was detected at the first appearance of the cortical plate (E35-E40). Both cytokines were present on both sides of the cortical plate, which contained fetuin-positive cells, but was free from cytokine staining. By E60, TNF-alpha immunoreactivity was less prominent than that of IL-1beta and was confined to the marginal zone and outer developing white matter; IL-1beta was present in the marginal zone and in two bands of immunoreactive cells, one at the border of the cortical plate/developing layer VI (cells of neuronal morphology) and the other at the border of layer V and the developing white matter (identified as microglia). By E80, TNF-alpha staining had disappeared and IL-1beta-immunopositive microglia were no longer detectable. By E100-E140 only a few immunoreactive cells were identified in layers V-VI; these did not co-localize with fetuin-positive cells. The differences in distribution between fetuin and the two cytokines suggest that the opsonizing role of fetuin, proposed for monocyte production of cytokines, is probably not present in the developing brain. However, early in neocortical development TNF-alpha and IL-1beta were present in the subplate zone at a time of intense synaptogenesis.  相似文献   

12.
13.
The effect of preliminary short-term irradiation with He-Ne laser light (632.8 nm, 0.2 mW/cm2) of the thymus zone projection of male NMRI mice subjected to acute toxic stress on the responses of immune cells was studied. Stress was modeled by lipopolysaccharide injection, 250 mg/100 g of body weight, which induced a significant increase in the production of several macrophage cytokines, IL-1alpha, IL-1beta, IL-6, IL-10 and TNF-alpha. A single irradiation with laser light did not provoke considerable variations in NO production in cells but induced an enhancement in the production of heat shock proteins Hsp25, Hsp70, and Hsp90. Nevertheless, when irradiation with red laser light was applied prior to toxic stress, considerable normalization of production of nearly all cytokines studied and nitric oxide was observed. Moreover, the normalization of production of heat shock proteins has been shown in these conditions. Thus, preliminary exposure of a small area of animal skin surface provoked a significant lowering in the toxic effect of lipopolysaccharide.  相似文献   

14.
The current study characterizes the cytokine protein (ELISA) and mRNA (gene array and RT-PCR) profiles of skin-derived mast cells cultured under serum-free conditions when activated by cross-linking of Fc epsilonRI. Prior to mast cell activation, mRNA only for TNF-alpha was detected, while after activation mRNA for IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF substantially increased, and for IL-4 it minimally increased. However, at the protein level certain recombinant cytokines, as measured by ELISAs, were degraded by proteases released by these skin-derived mast cells. IL-6 and IL-13 were most susceptible, followed by IL-5 and TNF-alpha; GM-CSF was completely resistant. These observations also held for the endogenous cytokines produced by activated mast cells. By using protease inhibitors, chymase and cathepsin G, not tryptase, were identified in the mast cell releasates as the likely culprits that digest these cytokines. Their cytokine-degrading capabilities were confirmed with purified chymase and cathepsin G. Soy bean trypsin inhibitor, when added to mast cell releasates, prevented the degradation of exogenously added cytokines and, when added to mast cells prior to their activation, prevented degradation of susceptible endogenous cytokines without affecting either degranulation or GM-CSF production. Consequently, substantial levels of IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF were detected 24-48 h after mast cells had been activated, while none were detected 15 min after activation, by which time preformed granule mediators had been released. IL-4 was not detected at any time point. Thus, unless cytokines are protected from degradation by endogenous proteases, cytokine production by human mast cells with chymase and cathepsin G cells may be grossly underestimated.  相似文献   

15.
Beta adrenergic receptors (βARs) mediate physiologic responses to the catecholamines epinephrine and norepinephrine released by the sympathetic nervous system.W...  相似文献   

16.
NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-alpha, IFN-gamma), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-kappaB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-kappaB activity and prevented IkappaBalpha degradation in a dose-dependent way, inhibited IFN-gamma production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo.  相似文献   

17.
Lectins are known as polyclonal activators of lymphocytes and work through the induction of battery of cytokines, which vary from lectin to lectin. Most widely used biological response modifier Mistletoe lectin (ML-1) in therapy stimulates lymphocytes, macrophages, and natural killer cells and induces both TH1 and TH2 type cytokines. Abrus agglutinin, similar to ML-1 with respect to carbohydrate specificity [gal (beta1-->3) gal/Nac], was studied both in native (NA) and heat denatured (HDA) condition for murine splenocyte proliferation, cytokine secretion, NK-cell activation, and thymocyte proliferation in vitro with a view to assess its potential as an immunomodulator. Both NA and HDA activate splenocytes and induce production of cytokines like IL-2, IFN-gamma and TNF-alphabeta indicating a TH1 type of immune response. Native agglutinin and HDA induced conditioned media of adherent splenocytes could stimulate non-adherent splenocytes and vice versa. Heat denatured agglutinin was able to induce NK-cell activation at much lower concentration than that of NA, but the extent of NK-cell activation was higher for NA. Proliferation of thymocytes by NA and HDA was also observed. This study indicates that Abrus agglutinin could be a potential immunomodulator both in native as well as in heat denatured form.  相似文献   

18.
The developing immune response in the lymph nodes of mice infected with influenza virus has both Th1- and Th2-type characteristics. Modulation of the interactions between antigen-presenting cells and T cells is one mechanism that may alter the quality of the immune response. We have previously shown that the ability of dendritic cells (DC) to stimulate the proliferation of alloreactive T cells is changed by influenza virus due to viral neuraminidase (NA) activity. Here we show that DC infected with influenza virus A/PR/8/34 (PR8) stimulate T cells to produce different types of cytokines in a dose-dependent manner. Optimal amounts of the Th1-type cytokines interleukin-2 (IL-2) and gamma interferon (IFN-gamma) were produced from T cells stimulated by DC infected with low doses of PR8, while the Th2-type cytokines IL-4 and IL-10 were produced only in response to DC infected with high doses of PR8. IL-2 and IFN-gamma levels corresponded with T-cell proliferation and were dependent on the activity of viral NA on the DC surface. In contrast, IL-4 secretion required the treatment of T cells with NA. Since viral particles were released only from DC that are infected with high doses of PR8, our results suggest that viral NA on newly formed virus particles desialylates T-cell surface molecules to facilitate a Th2-type response. These results suggest that the activity of NA may contribute to the mixed Th-type response observed during influenza virus infection.  相似文献   

19.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

20.
Flow cytometry has become a powerful technique to measure intracellular cytokine production in lymphocytes and monocytes. Appropriate inhibition of the secretion of the produced cytokines is required for studying intracellular cytokine expression. The aim of this study was to compare the capacity of cytokine secretion inhibitors, monensin and brefeldin A, in order to trap cytokine production (interleukin-1 beta [IL-1beta], IL-6, tumor necrosis factor-alpha [TNF-alpha]) within peripheral blood monocytes. A two-color flow cytometric technique was used to measure intracellular spontaneous and lipopolysaccharide (LPS)-stimulated IL-1beta, IL-6, and TNF-alpha production in monocytes (CD14+) of whole blood cultures. The viability of monensin-treated monocytes was slightly lower than that of brefeldin A-inhibited monocytes, as measured with propidium iodide (PI). The percentage of IL-6 and TNF-alpha-producing monocytes after 8 h of culture without stimulation revealed significant lower values for monensin-treated than for brefeldin A-treated monocytes. The percentages for stimulated cells did not differ. The spontaneous intracellular production in molecules of equivalent soluble fluorochrome units (MESF) of IL-1beta, IL-6, and TNF-alpha after 8 h of culture was higher in brefeldin A than in monensin-inhibited monocytes. The LPS-stimulated intracellular production of IL-1beta, IL-6, and TNF-alpha was increased in brefeldin A-inhibited monocytes. In conclusion, for flow cytometric determination of intracellular monocytic cytokines (IL-1beta, IL-6, and TNF-alpha), brefeldin A is a more potent, effective, and less toxic inhibitor of cytokine secretion than monensin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号