首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inatherosclerosis and hypertension, vascular smooth muscle cells (SMCs)are stimulated to proliferate and exhibit enhanced gap junction proteinexpression. Our goal was to determine whether gap junction functiondiffers in proliferating vs. growth-arrested SMCs. A7r5 cells(embryonic rat aortic SMCs) did not proliferate in media with reducedserum (~90% of cells inG0/G1phase after 48-96 h in 1% fetal bovine serum). Dye coupling wasless but electrical coupling was comparable in proliferating vs.growth-arrested A7r5 cells, suggesting differences in junctionalpermselectivity. In growth-arrested cells, junctional conductancesmeasured with potassium glutamate, tetraethylammonium chloride, and KClwere well predicted by the conductivities of these solutions. Incontrast, junctional conductances measured with potassium glutamate andtetraethylammonium chloride in proliferating cells were significantlygreater than predicted by the conductivities of these solutions. Theseresults suggest that junctions between growth-arrested cells arepermeated equally well and simultaneously by anions and cations,whereas junctions between proliferating cells are poorly permeated by large molecules of either charge and equally well but notsimultaneously by small anions and cations. The data indicate that A7r5cells regulate chemical coupling independent of electrical coupling, acapacity that could facilitate growth control while protecting vasomotor responsiveness of vessels.

  相似文献   

3.
4.
Cells of an established clonal line (RVF-SMC) derived from rat vena cava are described by light and electron microscope methods and biochemical analysis of the major proteins. The cells are flat, and they moderately elongate and form monolayers. They are characterized by prominent cables of microfilaments bundles decoratable with antibodies to actin and alpha-actinin. These bundles contain numerous densely stained bodies and are often flanked by typical rows of surface caveolae and vesicles. The cells are rich in intermediate-sized filaments of the vimentin type but do not show detectable amounts of desmin and cytokeratin filaments. Isoelectric focusing and protein chemical studies have revealed actin heterogeneity. In addition to the two cytoplasmic actins, beta and gamma, common to proliferating cells, two smooth muscle-type actins (an acidic alpha-like and a gamma-like) are found. The major (alpha-type) vascular smooth muscle actin accounts for 28% of the total cellular actin. No skeletal muscle or cardiac muscle actin has been detected. The synthesis of large amounts of actin and vimentin and the presence of at least three actins, including alpha- like actin, have also been demonstrated by in vitro translation of isolated poly(A)+ mRNAs. This is, to our knowledge, the first case of expression of smooth muscle-type actin in a permanently growing cell. We conclude that permanent cell growth and proliferation is compatible with the maintained expression of several characteristic cell features of the differentiated vascular smooth muscle cell including the formation of smooth muscle-type actin.  相似文献   

5.
Summary The accumulation and proliferation of vascular smooth muscle cells (VSMC) within the vessel wall is an important pathogenic feature in the development of atherosclerosis. Glucose metabolism has been implicated to play an important role in this cellular mechanism. To further elucidate the role of glucose metabolism in atherogenesis, glycolysis and its regulation have been investigated in proliferating VSMC. Platelet derived growth factor (PDGF BB)-induced proliferation of VSMCs significantly stimulated glucose flux through glycolysis. Further evaluating the enzymatic regulation of this pathway, the analysis of flux:metabolite co-responses revealed that anaerobic glycolytic flux is controlled at different sites of gycolysis in proliferating VSMCs, being consistent with the concept of multisite modulation. These findings indicate that regulation of glycolytic flux in proliferating VSMCs differs from traditional concepts of metabolic control of the Embden–Meyerhof pathway.  相似文献   

6.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

7.
We have examined alpha-smooth muscle actin (alpha-SM actin) protein and mRNA levels in proliferating and density-arrested rabbit vascular smooth muscle cells (SMC) and also studied overall polypeptide synthesis in these cells by two-dimensional (2-D) gel electrophoresis. Of the approximately 1,000 cellular polypeptides resolved by 2-D gel analysis, we consistently detected increased expression of 12 polypeptides in growth-arrested SMC. These polypeptides, with apparent molecular weights of 24,000 to 55,000 exhibited relative increases of between fourfold to greater than tenfold. Three of these polypeptides were expressed at undetectable levels in proliferating SMC. We also detected 12 secreted polypeptides that were expressed at higher levels in growth-arrested SMC. More changes were associated with the secreted polypeptides, since they represented approximately 4% of the total resolved secreted polypeptides, while only 1% of the cellular polypeptides were increased in high-density growth-arrested cells. Under these conditions we observed no change in relative alpha-SM actin protein content as determined by 2-D gel analysis and Western blots. This was corroborated by high levels of alpha-SM actin mRNA levels in both proliferating and high-density growth-arrested SMC. These results indicate rabbit vascular SMC maintain a high level of expression of a smooth muscle differentiation marker (alpha-SM actin) in a proliferation- and density-independent manner. We also examined polypeptide synthesis in SMC isolated by enzymatic digestion of the aorta vs. cells isolated by the explant method. We found that although overall protein patterns were remarkably similar, several differences were observed. These differences were not due to increased contamination by fibroblasts, since both enzymatically- and explant-derived SMC contained high levels of alpha-SM actin as determined by immunofluorescence and by Northern analysis.  相似文献   

8.
9.
10.
Jeon KI  Jono H  Miller CL  Cai Y  Lim S  Liu X  Gao P  Abe J  Li JD  Yan C 《The FEBS journal》2010,277(24):5026-5039
The phenotypic change of vascular smooth muscle cells (VSMCs), from a 'contractile' phenotype to a 'synthetic' phenotype, is crucial for pathogenic vascular remodeling in vascular diseases such as atherosclerosis and restenosis. Ca(2+)/calmodulin-stimulated phosphodiesterase 1 (PDE1) isozymes, including PDE1A and PDE1C, play integral roles in regulating the proliferation of synthetic VSMCs. However, the underlying molecular mechanism(s) remain unknown. In this study, we explore the role and mechanism of PDE1 isoforms in regulating β-catenin/T-cell factor (TCF) signaling in VSMCs, a pathway important for vascular remodeling through promoting VSMC growth and survival. We found that inhibition of PDE1 activity markedly attenuated β-catenin/TCF signaling by downregulating β-catenin protein. The effect of PDE1 inhibition on β-catenin protein reduction is exerted via promoting glycogen synthase kinase 3 (GSK3)β activation, β-catenin phosphorylation and subsequent β-catenin protein degradation. Moreover, PDE1 inhibition specifically upregulated phosphatase protein phosphatase 2A (PP2A) B56γ subunit gene expression, which is responsible for the effects of PDE1 inhibition on GSK3β and β-catenin/TCF signaling. Furthermore, the effect of PDE1 inhibition on β-catenin was specifically mediated by PDE1A but not PDE1C isozyme. Interestingly, in synthetic VSMCs, PP2A B56γ, phospho-GSK3β and phospho-β-catenin were all found in the nucleus, suggesting that PDE1A regulates nuclear β-catenin protein stability through the nuclear PP2A-GSK3β-β-catenin signaling axis. Taken together, these findings provide direct evidence for the first time that PP2A B56γ is a critical mediator for PDE1A in the regulation of β-catenin signaling in proliferating VSMCs.  相似文献   

11.
The current study examined angiotensin receptor (ATR) regulation in proliferating rat aortic vascular smooth muscle cells (VSMCs) in culture. Radioligand competition analysis coupled with RNase protection assays (RPAs) revealed that angiotensin type 1a receptor (AT(1a)R) densities (B(max)) increased by 30% between 5 and 7 days in culture [B(max) (fmol/mg protein): day 5, 379 +/- 8.4 vs. day 7, 481 +/- 12, n = 3, P < 0.05] under conditions in which no significant changes in AT(1a)R mRNA expression occurred [in RPA arbitrary units (AU): day 5, 0.23 +/- 0.01 vs. day 7, 0.24 +/- 0.04, n = 4] or in mRNA synthesis determined by nuclear run-on assays [AU: day 5, 0.35 +/- 0.14 vs. day 7, 0.33 +/- 0.11, n = 5]. In contrast, polysome distribution analysis indicated that AT(1a)R mRNA was more efficiently translated in day 7 cells compared with day 5 [% of AT(1a)R mRNA in fraction 2 out of total AT1R mRNA recovered from the sucrose gradient: day 5, 20.9 +/- 9.9 vs. day 7, 56.8 +/- 5.6, n = 3, P < 0.001]. Accompanying the polysome shift was 50% less RNA-protein complex (RPC) formation between VSMC cytosolic RNA binding proteins in day 7 cells compared with 5-day cultures and the 5' leader sequence (5'LS) of the AT(1a)R [5'LS RPC (AU): day 5, 0.62 +/- 0.15 vs. day 7, 0.23 +/- 0.03; n = 4, P < 0.05] and also with exon 2 [Exon 2 RPC (AU): day 5, 35.0 +/- 5.7 vs. day 7, 17.2 +/- 3.6; n = 4, P < 0.05]. Taken together, these results suggest that AT(1a)R expression is regulated by translation during VSMC proliferation in part by RNA binding proteins that interact within exon 2 in the 5'LS of the AT(1a)R mRNA.  相似文献   

12.
The effects of PGE1 and PGF2alpha were studied on isolated strips of intrapulmonary arteries and veins from dog, sheep, swine and man. PGF2alpha contracted human arterial strips in a dose-dependent fashion, relaxed slightly sheep arteries and had no effect on dog arteries. Canine, sheep and human venous strips were contracted by PGF2alpha. PGE1 relaxed slightly both veins and arteries from dog and sheep. Human arteries usually contracted slightly and human veins usually relaxed slightly to PGE1. In a limited number of experiments, swine arteries and veins failed to respond to PGF2alpha or PGE1. All the vascular strips contracted well when exposed to NE. These results suggest that the responses of intrapulmonary vessels to PGF2alpha and PGE1 are species-dependent. PGF2alpha generally exhibits a contractile action, especially on veins. PGE1 usually relaxes intrapulmonary vessels. With regard to vessels from man, PGF2alpha is a powerful stimulant while PGE1 produces only small, variable effects.  相似文献   

13.
TRAIL is a cell-associated tumor necrosis factor-related apoptosis-inducing ligand originally identified in immune cells. The ligand has the capacity to induce apoptosis after binding to cell surface receptors. To examine TRAIL expression in murine vascular tissue, we employed in situ hybridization and immunohistochemistry. In these studies, we found that TRAIL mRNA and protein were specifically localized throughout the medial smooth muscle cell layer of the pulmonary artery. Notably, a similar pattern of expression was observed in the mouse aorta. Consistent with these findings, we found that cultures of primary human aorta and pulmonary artery smooth muscle cells express abundant TRAIL mRNA and protein. We also found that these cells and endothelial cells undergo cell lysis in response to exogenous addition of TRAIL. Last, we confirmed that TRAIL specifically activated a death program by confirming poly(ADP ribose) polymerase cleavage. Overall, we believe that these findings are relevant to understanding the factors that regulate cell turnover in the vessel wall.  相似文献   

14.
The expression and distribution of types 1, 2, and 3 inositol 1,4, 5-trisphosphate receptor (InsP(3)R) in proliferating, primary cultures of rat aortic smooth muscle were compared to fully developed and differentiated rat aortic smooth muscle. Subtype-specific InsP(3)R antibodies revealed that the expression of type 1 InsP(3)R was similar in cultured aortic cells and aorta homogenate but expression of type 2 and 3 InsP(3)R subtypes was increased 3-fold in cultured aortic cells. The distribution of the type 1 InsP(3)R was located throughout the cytoplasm; type 2 InsP(3)R was found closely associated with the nucleus and at the plasma membrane; type 3 InsP(3)R was distributed predominantly around the nucleus. Alterations in InsP(3)R subtype expression and localization may have important functions in regulating intracellular calcium release around the nucleus when vascular smooth muscle cells switch to a more proliferating phenotype.  相似文献   

15.
16.
Vascular endothelial growth factor (VEGF) and basic (b) fibroblast growth factor (FGF-2/bFGF) are involved in vascular development and angiogenesis. Pulmonary artery smooth muscle cells express VEGF and FGF-2 and are subjected to mechanical forces during pulsatile blood flow. The effect of stretch on growth factor expression in these cells is not well characterized. We investigated the effect of cyclic stretch on the expression of VEGF and FGF-2 in ovine pulmonary artery smooth muscle cells. Primary confluent cells from 6-wk-old lambs were cultured on flexible silicon membranes and subjected to cyclic biaxial stretch (1 Hz; 5-25% stretch; 4-48 h). Nonstretched cells served as controls. Expression of VEGF and FGF-2 was determined by Northern blot analysis. Cyclic stretch induced expression of both VEGF and FGF-2 mRNA in a time- and amplitude-dependent manner. Maximum expression was found at 24 h and 15% stretch (VEGF: 1.8-fold; FGF-2: 1.9-fold). These results demonstrate that mechanical stretch regulates VEGF and FGF-2 gene expression, which could play a role in pulmonary vascular development or in postnatal pulmonary artery function or disease.  相似文献   

17.
18.
Cerebral autosomal‐dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a familial fatal progressive degenerative disorder. One of the pathological hallmarks of CADASIL is a dramatic reduction of vascular smooth muscle cells (VSMCs) in cerebral arteries. Using VSMCs from the vasculature of the human umbilical cord, placenta and cerebrum of CADASIL patients, we found that CADASIL VSMCs had a lower proliferation rate compared to control VSMCs. Exposure of control VSMCs and endothelial cells (ECs) to media derived from CADASIL VSMCs lowered the proliferation rate of all cells examined. By quantitative RT‐PCR analysis, we observed increased Transforming growth factor‐β (TGFβ) gene expression in CADASIL VSMCs. Adding TGFβ‐neutralizing antibody restored the proliferation rate of CADASIL VSMCs. We assessed proliferation differences in the presence or absence of TGFβ‐neutralizing antibody in ECs co‐cultured with VSMCs. ECs co‐cultured with CADASIL VSMCs exhibited a lower proliferation rate than those co‐cultured with control VSMCs, and neutralization of TGFβ normalized the proliferation rate of ECs co‐cultured with CADASIL VSMCs. We suggest that increased TGFβ expression in CADASIL VSMCs is involved in the reduced VSMC proliferation in CADASIL and may play a role in situ in altered proliferation of neighbouring cells in the vasculature.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号