首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the RCT pathway. Twenty-three healthy men (45-65 years) participated in a randomized, partially diet-controlled, crossover trial. They consumed four glasses of whisky (40 g of alcohol) or water daily for 17 days. After 17 days of whisky consumption, serum capacity to induce ABCA1-dependent cholesterol efflux from J774 mouse macrophages was increased by 17.5% (P = 0.027) compared with water consumption. Plasma capacity to induce cholesterol efflux from Fu5AH cells increased by 4.6% (P = 0.002). Prebeta-HDL, apolipoprotein A-I (apoA-I), and lipoprotein A-I:A-II also increased by 31.6, 6.2, and 5.7% (P < 0.05), respectively, after whisky consumption compared with water consumption. Changes of cAMP-stimulated cholesterol efflux correlated (r = 0.65, P < 0.05) with changes of apoA-I but not with changes of prebeta-HDL (r = 0.30, P = 0.18). Cholesterol efflux capacities from serum of lean men were higher than those from overweight men. In conclusion, this study shows that moderate alcohol consumption increases the capacity of serum to induce cholesterol efflux from J774 mouse macrophages, which may be mediated by ABCA1.  相似文献   

2.
OBJECTIVE--To examine the dose-response effect of alcohol consumption on the number of cerebellar Purkinje cells. DESIGN--A prospective necropsy study combined with detailed reports on use of alcohol from a relative or friend. The number of Purkinje cells was counted in the anterior midsagittal section of the cerebellar vermis, the area of which was measured by computer assisted morphometry. SETTING--Department of forensic medicine, University of Helsinki. SUBJECTS--66 men, aged 35 to 69 years, subjected to medicolegal necropsy because of sudden or violent death. The average all year daily alcohol consumption over the year was 0 to 10 g in 17 men, 11 to 80 g in 24 men, and more than 80 g in 25 men. MAIN OUTCOME MEASURES--Number of Purkinje cells, alcohol consumption. RESULTS--The numbers and density of Purkinje cells in the cross section of vermis showed a consistent but weak decrease with increasing daily alcohol intake but not with age. A wide variation in the cell counts was observed, especially in men drinking more than 80 g, suggesting differences in the susceptibility to effects of alcohol. Compared with men drinking 40 g or less, a long term moderate consumption of an average of 41 to 80 g daily was associated with a significant average loss of 242 (95% confidence interval 45 to 439) Purkinje cells (15.2%) from a mean of 1583 to 1341 cells. In those drinking 81 to 180 g the average loss was 535 (259 to 811) cells (33.4%) to a mean of 1048 cells. The density of cells in the cross section of vermis also fell significantly by 0.9 cell/mm (0.1 to 1.7) when the daily consumption exceeded 40 g and by 1.4 cell/mm (0.3 to 2.5) when the intake was 81 to 180 g. Only three cases (4.5%) in the series showed macroscopical cerebellar atrophy. CONCLUSION--Long term intake of moderate doses of alcohol daily for 20-30 years may damage the cerebellum before the onset of macroscopical atrophy. Despite distinct individual differences an all year average daily alcohol intake of 41-80 g results in a risk of significant loss of Purkinje cells.  相似文献   

3.
The studies on the effect of moderate alcohol consumption on mental capacity in elderly and inflammatory markers in coronary heart disease are reviewed.  相似文献   

4.
Light to moderate alcohol consumption is associated with a reduced risk of coronary heart disease, as well as ischaemic stroke and possibly type 2 diabetes. Epidemiological and physiological data are in favour of a causal relationship. Proposed protective mechanisms include the stimulation of HDL-mediated processes such as reverse cholesterol transport and antioxidative effects. More well-controlled studies are needed to provide a complete understanding of the complexity of the underlying physiological mechanisms.  相似文献   

5.
6.
In Chinese hamster embryonic fibroblasts (IIC9 cells) alpha-thrombin activates the MAPK(ERK) and phosphatidylinositol 3-OH-kinase (PI 3-kinase)/Akt pathways, and both are essential for progression through the G(1) phase of the cell cycle. We investigated in IIC9 cells, the role of beta-arrestin1 in alpha-thrombin signaling to these pathways. alpha-Thrombin stimulates rapid and sustained PI 3-kinase and Akt activities. Expression of a dominant negative beta-arrestin1 (beta-arrestin1(V53D)) inhibits rapid but not sustained PI 3-kinase and Akt activities. Surprisingly, expression of beta-arrestin1(V53D) does not block activation of the MAPK(ERK) pathway. PI 3-kinase and Akt activities are also inhibited by expression of a beta-arrestin1 mutant, which impairs binding to c-Src (beta-arrestin1(P91G-P121E)), indicating the involvement of c-Src in the rapid stimulation of the PI 3-kinase/Akt pathway. Consistent with these results, PP1, a selective inhibitor of c-Src family kinases, prevents alpha-thrombin-stimulated Akt phosphorylation. Expression of beta- arrestin1(V53D) does not prevent G(1) progression, as its expression has no effect on [(3)H]thymidine incorporation into DNA. In agreement with the ineffectiveness of beta-arrestin1(V53D) to block G(1) progression, cyclin D1 protein amounts and CDK4-cyclin D1 activity is unaffected by expression of beta-arrestin1(V53D). Thus in IIC9 cells, alpha-thrombin activates rapid beta-arrestin1-dependent and sustained beta-arrestin1-independent Akt activity, suggesting that two mechanisms are involved. Furthermore, although blocking the beta-arrestin1-independent PI 3-kinase/Akt pathway prevents G(1) progression, inhibition of the beta-arrestin1-dependent pathway does not, indicating different roles for the rapid and sustained activities.  相似文献   

7.
Background: Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25–30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism.Methods: After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79.Results: Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin.Conclusions: Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway.  相似文献   

8.
In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.  相似文献   

9.
Kwak HB  Sun HM  Ha H  Lee JH  Kim HN  Lee ZH 《Molecules and cells》2008,26(5):436-442
Osteoclasts are multinucleated cells with the unique ability to resorb bone. Elevated activity of these cells under pathologic conditions leads to the progression of bone erosion that occurs in osteoporosis, periodontal disease, and rheumatoid arthritis. Thus, the regulation of osteoclast apoptosis is important for bone homeostasis. In this study, we examined the effects of the Janus tyrosine kinase 2 specific inhibitor AG490 on osteoclast apoptosis. We found that AG490 greatly inhibited osteoclast apoptosis. AG490 stimulated the phosphorylation of Akt and ERK. Adenovirus-mediated expression of dominant negative (DN)-Akt and DN-Ras in osteoclasts inhibited the survival of osteoclasts despite the presence of AG490. Cytochrome c release during osteoclast apoptosis was inhibited by AG490 treatment, but this effect was inhibited in the presence of LY294002 or U0126. AG490 suppressed the proapoptotic proteins Bad and Bim, which was inhibited in osteoclasts infected with DN-Akt and DN-Ras adenovirus. In addition, constitutively active MEK and myristoylated-Akt adenovirus suppressed the cleavage of pro-caspase-9 and -3 and inhibited osteoclast apoptosis induced by etoposide. Taken together, our results suggest that AG490 inhibited cytochrome c release into the cytosol at least partly by inhibiting the pro-apoptotic proteins Bad and Bim, which in turn suppressed caspase-9 and -3 activation, thereby inhibiting osteoclast apoptosis.  相似文献   

10.
Neuroglobin (Ngb) is a recently identified member of hemoglobin family, distributed mainly in central and peripheral nervous systems. Recent studies suggest that Ngb can protect neural cells from β-amyloid-induced toxicity in Alzheimer disease (AD). Hyperphosphorylation of tau is another characterized pathological hallmark in the AD brains; however, it is not reported whether Ngb also affects tau phosphorylation. In this study, we found that the level of Ngb was significantly reduced in Tg2576 mice (a recognized mouse model of AD) and TgMAPt mice, and the level of Ngb was negatively correlated with tau phosphorylation. Over-expression of Ngb attenuates tau hyperphosphorylation at multiple AD-related sites induced by up-regulation of glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase. While Ngb activates Akt and thus inhibits GSK-3β, simultaneously inhibition of Akt abolishes the effects of Ngb on GSK-3β inhibition and tau hyperphosphorylation. Our data indicate that Ngb may attenuate tau hyperphosphorylation through activating Akt signaling pathway, implying a therapeutic target for AD.  相似文献   

11.
Cardiac hypertrophy, including hypertension and valvular dysfunction, is a pathological feature of many cardiac diseases that ultimately leads to heart failure. Melatonin confers a protective role against pathological cardiac hypertrophy, but the underlying mechanisms remain elusive. In the present study, we hypothesized that melatonin protects against pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Male C57BL/6 mice that received adenovirus carrying cardiac-specific Atg5 (under the cTNT promoter; Ad-cTNT-Atg5) underwent transverse aortic constriction (TAC) or sham operation and received an intraperitoneal injection of melatonin (10 mg/kg/d), vehicle or LY294002 (10 mg/kg/d) for 8 weeks. Melatonin treatment for 8 weeks markedly attenuated cardiac hypertrophy and restored impaired cardiac function, as indicated by a decreased HW/BW ratio, reduced cell cross-sectional area and fibrosis, downregulated the mRNA levels of ANP, BNP, and β-MHC and ameliorated adverse effects on the LVEF and LVFS. Melatonin treatment also inhibited apoptosis and alleviated autophagy dysfunction. Furthermore, melatonin inhibited Akt/mTOR pathway activation, while these effects were blocked by LY294002. In addition, the effect of melatonin regulation on TAC-induced autophagy dysfunction was inhibited by LY294002 or cardiac-specific Atg5 overexpression. As expected, Akt/mTOR pathway inhibition or cardiac-specific Atg5 overexpression restrained melatonin alleviation of pressure overload-induced cardiac hypertrophy. These results demonstrated that melatonin ameliorated pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway.  相似文献   

12.
AimsCompound K (C-K; 20-O-d-glucopyranosyl-20(S)-protopanaxadiol) is a novel ginsenoside metabolite formed by intestinal bacteria and does not occur naturally in ginseng. In this study, we investigated whether administration of C-K has protective effects on myocardial ischemia-reperfusion injury and its potential mechanisms.Main methodsWe used in vivo mouse models of ischemia-reperfusion injury and performed biochemical assays in excised hearts.Key findingsC-K reduced infarct size compared with the control group after ischemia-reperfusion. Immunoblot analysis showed that C-K significantly enhanced protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) activity. Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked cardiac protection in vivo and attenuated phosphorylation of Akt and eNOS. Additionally, the hearts of C-K pretreated mice showed inhibition of mitochondrial swelling induced by Ca2+.SignificanceThis study showed that Compound K pretreatment has protective effects on myocardial ischemia-reperfusion injury, partly by mediating the activation of PI3K pathway and phosphorylation of Akt and eNOS.  相似文献   

13.
14.

Background

Natural heterologous valved conduits with a diameter greater than 22 mm that can be used for right ventricular outflow tract reconstruction in adults are not commercially available. The purpose of this study was to measure by ultrasonography the maximum diameter of the distended jugular veins of horses and cattle, respectively, to identify a population of animals that would be suitable for post-mortem collection of jugular veins at sizes greater than 22 mm.

Methods

The study population included 60 Warmblood horses, 25 Freiberger horses, 20 Brown Swiss cows, and 20 Holstein cows (including 10 Holstein and 10 Red Holstein). The maximum cross-sectional diameter of the distended jugular veins was measured at a location half-way between the mandibular angle and the thoracic inlet. The thoracic circumference (heart girth length) was used as a surrogate of body size. The jugular vein diameters of the different populations were compared by analysis of variance and the association between heart girth length and jugular vein diameter was determined in each of the four study populations by linear regression analysis.

Results

There was considerable individual variation of jugular vein diameters within each of the four study populations. There was no statistically significant relationship between thoracic circumference and jugular vein diameter in any of the populations. The jugular vein diameters of Brown Swiss cows were significantly larger than those of any of the other populations. Warmblood horses had significantly larger jugular vein diameters compared to Freiberger horses.

Conclusion

The results of this study suggest that the production of bovine or equine xenografts with diameters of greater than 22 mm would be feasible. Differences between species and breeds need to be considered. However, prediction of the jugular vein diameter based on breed and heart girth length in an individual animal is inaccurate.  相似文献   

15.
B‐cell maturation antigen (BCMA) is expressed on normal and malignant plasma cells and represents a potential target for therapeutic intervention. In this study, we characterized the mechanism underlying the protein kinase B (Akt) and c‐Jun N‐terminal kinase (JNK) pathways and BCMA interactions in regulating multiple myeloma (MM) cell survival. It was found that the expression levels of B cell‐activating factor (BAFF) and BCMA were increased in MM cells as compared with those in normal controls. The proliferation of U266 cells was induced by recombinant human BAFF (rhBAFF) and could also be decreased by BCMA siRNA. The expression of Bcl‐2 protein was up‐regulated, and Bax protein was down‐regulated after rhBAFF treatment, which could be reversed by BCMA siRNA. Similarly, the protein p‐JNK and p‐Akt were activated by rhBAFF and could be changed by BCMA siRNA. In addition, the BCMA mRNA and protein expression levels were decreased after treatment with Akt and JNK pathway inhibitors. These results suggest that Akt and JNK pathways are involved in the regulation of BCMA. A novel BAFF/BCMA signalling pathway in MM may be a new therapeutic target for MM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The modifier of cell adhesion protein (MOCA), or Dock3, initially identified as presenilin-binding protein (PBP), belongs to the Dock180 family of proteins and is localized specifically in neurons. Here we demonstrate that MOCA binds to Rac1 and enhances its activity, which leads to the activation of c-Jun NH(2)-terminal kinase (JNK) and causes changes in cell morphology. Farnesylated MOCA, which is localized in the plasma membrane, enhances the activation of Rac1 and JNK more markedly than wild-type MOCA, and cells expressing farnesylated MOCA show flattened morphology similar to those expressing a constitutive active mutant of Rac1, Rac1Q61L. On poly-d-lysine-coated dishes, endogenous MOCA is concentrated on the leading edge of broad membrane protrusions (lamellipodia) where actin filaments are co-localized. MOCA is also concentrated with actin on the growth cone in primary cultures of cortical neurons. These observations suggest that MOCA may induce cytoskeletal reorganization and changes in cell adhesion by regulating the activity of Rac1.  相似文献   

17.
Emphysema is one of the characteristic features of chronic obstructive pulmonary disease, which is caused mainly by cigarette smoking. Recent data have suggested that apoptosis and cell cycle arrest may contribute to the development of emphysema. In this study, we addressed the question of whether and how cigarette smoke affected Akt, which plays a critical role in cell survival and proliferation. In normal human lung fibroblasts, cigarette smoke extract (CSE) caused cell death, accompanying degradation of total and phosphorylated Akt (p-Akt), which was inhibited by MG132. CSE exposure resulted in preferential ubiquitination of the active Akt (myristoylated), rather than the inactive (T308A/S473A double mutant) Akt. Consistent with cytotoxicity, CSE induced a progressive decrease of phosphorylated human homolog of mouse double minute homolog 2 (p-HDM2) and phosphorylated apoptosis signal regulating kinase 1 (p-ASK1) with concomitant elevation of p53, p21, and phosphorylated p38 MAPK. Forced expression of the active Akt reduced both CSE-induced cytotoxicity and alteration in HDM2/p53/p21 and ASK1/p38 MAPK, compared with the inactive Akt. Of note, CSE induced expression of the tetratrico-peptide repeat domain 3 (TTC3), known as a ubiquitin ligase for active Akt. TTC3 siRNAs suppressed not only CSE-induced Akt degradation but also CSE-induced cytotoxicity. Accordingly, rat lungs exposed to cigarette smoke for 3 months showed elevated TTC3 expression and reduced Akt and p-Akt. Taken together, these data suggest that cigarette smoke induces cytotoxicity, partly through Akt degradation via the ubiquitin-proteasome system, in which TTC3 acts as a ubiquitin ligase for active Akt.  相似文献   

18.
In response to metabolic stress, GLUT4, the most abundant glucose transporter, translocates from intracellular vesicles to the plasma membrane. This appears to play an important role in protecting cardiac myocytes from ischemic injury. To investigate the precise mechanisms of GLUT4 translocation in cardiomyocytes, we have established a method for quantifying the relative proportion of sarcolemmal GLUT4 to total GLUT4 in these cells. Stimulation with H2O2 resulted in a concentration-dependent increase in GLUT4 translocation, which peaked at 15 min after stimulation. The dominant-negative form (DN) of AMP-activated protein kinase (AMPK) alpha2 inhibited the H2O2-induced translocation of GLUT4. We further examined the role of two known AMPK kinases (AMPKKs), calmodulin-dependent protein kinase kinase (CaMKK)beta and LKB1. The DN of CaMKKbeta or LKB1 alone inhibited H2O2-induced GLUT4 translocation only partially compared to the inhibition produced by the DN of AMPKalpha2. However, the combination of DN-LKB1 and DN-CaMKKbeta inhibited translocation to an extent similar to with DN-AMPKalpha2. Stimulation with H2O2 also activated Akt and the inhibition of PI3-K/Akt prevented GLUT4 translocation to the same extent as with AMPK inhibition. When the DN of AMPKalpha2 was applied with DN-PI3-K, there was a complete reduction in the GLUT4 membrane level similar to that seen at the 0 time-point. These results demonstrate that AMPK and PI3-K/Akt have an additive effect on oxidative stress-mediated GLUT4 translocation.  相似文献   

19.
The MT2 receptor is a principal type of G protein-coupled receptor that mainly mediates the effects of melatonin. Deficits of melatonin/MT2 signaling have been found in many neurological disorders, including Alzheimer''s disease, the most common cause of dementia in the elderly, suggesting that preservation of the MT2 receptor may be beneficial to these neurological disorders. However, direct evidence linking the MT2 receptor to cognition-related synaptic plasticity remains to be established. Here, we report that the MT2 receptor, but not the MT1 receptor, is essential for axonogenesis both in vitro and in vivo. We find that axon formation is retarded in MT2 receptor knockout mice, MT2-shRNA electroporated brain slices or primary neurons treated with an MT2 receptor selective antagonist. Activation of the MT2 receptor promotes axonogenesis that is associated with an enhancement in excitatory synaptic transmission in central neurons. The signaling components downstream of the MT2 receptor consist of the Akt/GSK-3β/CRMP-2 cascade. The MT2 receptor C-terminal motif binds to Akt directly. Either inhibition of the MT2 receptor or disruption of MT2 receptor-Akt binding reduces axonogenesis and synaptic transmission. Our data suggest that the MT2 receptor activates Akt/GSK-3β/CRMP-2 signaling and is necessary and sufficient to mediate functional axonogenesis and synaptic formation in central neurons.Synaptic circuits are established at the sites of axon–dendritic, axon–somatic or axon–axonal contact, in which functional axonogenesis is a critical step.1 Axonogenesis can be regulated by many intracellular signals that involve cytoskeletal rearrangements,2 local protein degradation,3 as well as diffusional barriers.4 Additionally, several extracellular neurotrophic factors and hormones have also been shown to have a role in axon guidance and synaptic formation in central neurons.5, 6 To date, the role of melatonin and its receptors in axonogenesis remains unclear. Most of the biological functions of melatonin are mediated by its two receptors, MT1 and MT2 receptors, both of them belong to the G protein-coupled receptor (GPCR) subfamily and are widely expressed throughout the central nervous system (CNS).7 Activation of the MT2 receptor in response to melatonin is critical for controlling circadian rhythms7 and regulation of slow wave sleep.8, 9 Early studies have shown that activation of the MT2 receptor in the retina reduces the release of dopamine, while dopamine inhibits growth cone motility and neurite outgrowth during embryonic development,10, 11 suggesting the involvement of the MT2 receptor in functional axonogenesis. In mutant mice with deficient expression of the MT2 gene, the induction of long-term potentiation (LTP) of excitatory synaptic transmission is impaired, and this impairment is closely related to deficits in learning.12 In the hippocampus, the MT2 receptor inhibits GABAA receptor-mediated current,13 which is implicated in the synaptic transmission. In Alzheimer''s disease, expression of the MT2 receptor is significantly reduced, especially in the hippocampus.12, 14, 15 A partial agonist of the MT2 receptor, UCM765, exhibits anxiolytic-like properties by increasing the time spent in the open arm of an elevated plus maze test, and by reducing the latency to eat in a novel environment in the novelty suppressed feeding test, suggesting its role in anxiety.16 Together, these findings suggest that the MT2 receptor links the signaling cascades that mediate learning and memory formation, one of the important biological functions of melatonin;17 however, the cellular and molecular events underlying this linkage are yet to be established.Dissociated hippocampal neurons have been commonly used as an excellent in vitro model in the study of axon development and synaptic transmission because they maintain morphological, functional and molecular characteristics of the hippocampal neurons in vivo.18 In dissociated hippocampal neurons, the transition for axon formation and maturation involves the following five stages:19 stage 1 neurons (~2 to 4 h after plating) display abundant lamellipodia and filopodia that develop into several immature short neurites at stage 2 (~12 to 24 h); polarization occurs at stage 3 (~24 to 48 h), in which a single neurite initiates a rapid elongation to become the axon while others acquire dendritic identity; stage 4 (~3–4 days) is characterized by rapid outgrowth of axon and dendrites; and at stage 5 (7 days onwards), the maturation of axon and dendrites is essential for functional synapse formation.20, 21 In the present study, we have identified a novel role for the MT2 receptor in functional axonogenesis and show that activation of the MT2 receptor is crucial for functional axonogenesis and synaptic transmission in central neurons. Using fluorescence resonance energy transfer (FRET) imaging combined with peptide blocking assays, we have identified Akt as an interacting partner and a substrate of the MT2 receptor. Activation of the MT2 receptor-Akt signaling cascade promotes the formation of functional synapses in the hippocampus, whereas inhibition of the MT2 receptor arrests axonogenesis and synaptic transmission. Given the implications of the MT2 receptor in learning and memory, we propose that targeting MT2 receptor-Akt signaling may be a feasible strategy for stimulating functional synaptic circuit assembly.  相似文献   

20.
OBJECTIVE: To analyze cytologically the buccal mucosa of smoking and nonsmoking volunteers to determine what cellular changes are induced by cigarettes and alcohol consumption. STUDY DESIGN: In order to evaluate cellular changes induced by smoking and alcohol consumption, exfoliative cytology was used for the analysis of mucosal smears obtained from the buccal mucosa of 25 smokers and 25 nonsmokers. The number of cigarettes consumed, duration of smoking, presence or absence of alcohol ingestion, ingested alcohol dose and frequency of consumption, and most frequently used type of alcoholic beverage were determined using a questionnaire. Three smears from each individual stained by the Papanicolaou method were analyzed quantitatively and qualitatively under a light microscope by 2 experienced examiners in terms of inflammatory and dysplastic alterations and of the degree of epithelial maturation. RESULTS: Although numerous alterations were observed in smokers they corresponded up to only Papanicolaou class II and were not significantly different from nonsmokers (Mann-Whitney and chi2 tests, p < 0.05). A higher proportion of inflammatory cells (polymorphonuclear and mononuclear cells) were obtained from smokers as compared to nonsmokers, while the proportion of bacteria was similar in the 2 groups. CONCLUSION: The findings indicate that even after a short period of cigarette use and alcohol consumption, inflammatory alterations were detectable on exfoliative cytology of the buccal mucosa in a young group, demonstrating the usefulness of cytology for early detection in smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号