共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghosh SK Pandolfino JE Zhang Q Jarosz A Kahrilas PJ 《American journal of physiology. Gastrointestinal and liver physiology》2006,291(3):G525-G531
This study aimed to use a novel high-resolution manometry (HRM) system to establish normative values for deglutitive upper esophageal sphincter (UES) relaxation. Seventy-five asymptomatic controls were studied. A solid-state HRM assembly with 36 circumferential sensors spaced 1 cm apart was positioned to record from the hypopharynx to the stomach. Subjects performed ten 5-ml water swallows and one each of 1-, 10-, and 20-ml volume swallows. Pressure profiles across the UES were analyzed using customized computational algorithms that measured 1) the relaxation interval (RI), 2) the median intrabolus pressure (mIBP) during the RI, and 3) the deglutitive sphincter resistance (DSR) defined as mIBP/RI. The automated analysis succeeded in confirming bolus volume modulation of both the RI and the mIBP with the mean RI ranging from 0.32 to 0.50 s and mIBP ranging from 5.93 to 13.80 mmHg for 1- and 20-ml swallows, respectively. DSR was relatively independent of bolus volume. Peak pharyngeal contraction during the return to the resting state postswallow was almost 300 mmHg, again independent of bolus volume. We performed a detailed analysis of deglutitive UES relaxation with a novel HRM system and customized software. The enhanced spatial resolution of HRM allows for the accurate, automated assessment of UES relaxation and intrabolus pressure characteristics, in both cases confirming the volume-dependent effects and absolute values of these parameters previously demonstrated by detailed analysis of concurrent manometry/fluoroscopy data. Normative values were established to aid in future clinical and investigative studies. 相似文献
2.
A A Kromin 《Fiziologicheski? zhurnal》1991,37(3):59-65
Electrical and mechanical activities of the rabbit muscles in different zones of the esophageal cervical part were examined on free-moving rabbits with chronically implanted electrodes and force transducers under conditions of hunger and food intake. It is shown that the functional role of the circular muscles of the cranial end of the esophagus is determined by their participation in activity of the superior esophageal sphincter. 相似文献
3.
Ghosh SK Pandolfino JE Rice J Clarke JO Kwiatek M Kahrilas PJ 《American journal of physiology. Gastrointestinal and liver physiology》2007,293(4):G878-G885
Assessing deglutitive esophagogastric junction (EGJ) relaxation is an essential focus of clinical manometry. Our aim was to apply automated algorithmic analyses to high-resolution manometry (HRM) studies to ascertain the optimal method for discriminating normal from abnormal deglutitive EGJ relaxation. All 473 subjects (73 controls) were studied with a 36-channel solid-state HRM assembly during water swallows. Patients were classified as: 1) achalasia, 2) postfundoplication, 3) nonachalasia with normal deglutitive EGJ relaxation, or 4) functional obstruction (preserved peristalsis with incomplete EGJ relaxation). Automated computer programs assessed the adequacy of EGJ relaxation by using progressively complex analysis routines to compensate for esophageal shortening, crural diaphragm contraction, and catheter movement, all potential confounders. The single-sensor method of assessing EGJ relaxation had a sensitivity of only 52% for detecting achalasia. Of the automated HRM analysis paradigms tested, the 4-s integrated relaxation pressure using a cutoff of 15 mmHg performed optimally with 98% sensitivity and 96% specificity in the detection of achalasia. We also identified a heterogeneous group of 26 patients with functional EGJ obstruction attributed to variant achalasia and other diverse pathology. Although further clinical experience will ultimately judge, it is our expectation that applying rigorous methodology such as described herein to the analysis of HRM studies will improve the consistency in the interpretation of clinical manometry and prove useful in guiding clinical management. 相似文献
4.
Szczesniak MM Fuentealba SE Burnett A Cook IJ 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(4):G982-G988
BACKGROUND AND AIMS: the neural mechanisms of distension-induced esophagoupper esophageal sphincter (UES) reflexes have not been explored in humans. We investigated the modulation of these reflexes by mucosal anesthesia, acid exposure, and GABA(B) receptor activation. In 55 healthy human subjects, UES responses to rapid esophageal air insufflation and slow balloon distension were examined before and after pretreatment with 15 ml of topical esophageal lidocaine, esophageal HCl infusion, and baclofen 40 mg given orally. In response to rapid esophageal distension, UES can variably relax or contract. Following a mucosal blockade by topical lidocaine, the likelihood of a UES relaxation response was reduced by 11% (P < 0.01) and the likelihood of a UES contractile response was increased by 14% (P < 0.001) without alteration in the overall UES response rate. The UES contractile response to rapid esophageal air insufflation was also increased by 8% (P < 0.05) following sensitization by prior mucosal acid exposure. The UES contractile response, elicited by balloon distension, was regionally dependent (P < 0.05) (more frequent and of higher amplitude with proximal esophageal distension), and the response was attenuated by topical lidocaine (P < 0.05). Baclofen (40 mg po) had no effect on these UES reflexes. Abrupt gaseous esophageal distension activates simultaneously both excitatory and inhibitory pathways to the UES. Partial blockade of the mucosal mechanosensitive receptors permits an enhanced UES contractile response mediated by deeper esophageal mechanoreceptors. Activation of acid-sensitive esophageal mucosal chemoreceptors upregulates the UES contractile response, suggestive of a protective mechanism. 相似文献
5.
Dogan I Bhargava V Liu J Mittal RK 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(1):G329-G334
Swallow and esophageal distension-induced relaxations of the lower esophageal sphincter (LES) are associated with an orad movement of the LES because of a concurrent esophageal longitudinal muscle contraction. We hypothesized that the esophageal longitudinal muscle contraction induces a cranially directed mechanical stretch on the LES and therefore studied the effects of a mechanical stretch on the LES pressure. In adult opossums, a silicon tube was placed via mouth into the esophagus and laparotomy was performed. Two needles with silk sutures were passed, 90 degrees apart, through the esophageal walls and silicon tube, 2 cm above the LES. The tube was withdrawn, and one end of each of the four sutures was anchored to the esophageal wall and the other end exited through the mouth to exert graded cranially directed stretch on the LES by using pulley and weights. A cranially directed stretch caused LES relaxation, and with the cessation of stretch there was recovery of the LES pressure. The degree an d duration of LES relaxation increased with the weight and the duration of stretch, respectively. The mean LES relaxation in all animals was 77.7 +/- 4.7%. The required weight to induce maximal LES relaxation differed in animals (714 +/- 348 g). N(G)-nitro-L-arginine, a nitric oxide inhibitor, blocked the axial stretch-induced LES relaxation almost completely (from 78 to 19%). Our data support the presence of an axial stretch-activated inhibitory mechanism in the LES. The role of axial stretch in the LES relaxation induced by swallow and esophageal distension requires further investigation. 相似文献
6.
van Wijk MP Blackshaw LA Dent J Benninga MA Davidson GP Omari TI 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(4):G713-G718
Patients with gastroesophageal reflux disease show an increase in esophagogastric junction (EGJ) distensibility and in frequency of transient lower esophageal sphincter relaxations (TLESR) induced by gastric distension. The objective was to study the effect of localized EGJ distension on triggering of TLESR in healthy volunteers. An esophageal manometric catheter incorporating an 8-cm internal balloon adjacent to a sleeve sensor was developed to enable continuous recording of EGJ pressure during distension of the EGJ. Inflation of the balloon doubled the cross-section of the trans-sphincteric portion of the catheter from 5 mm OD (round) to 5 × 11 mm (oval). Ten healthy subjects were included. After catheter placement and a 30-min adaptation period, the EGJ was randomly distended or not, followed by a 45-min baseline recording. Subjects consumed a refluxogenic meal, and recordings were made for 3 h postprandially. A repeat study was performed on another day with EGJ distension status reversed. Additionally, in one subject MRI was performed to establish the exact position of the balloon in the inflated state. The number of TLESR increased during periods of EGJ distension with the effect being greater after a meal [baseline: 2.0(0.0-4.0) vs. 4.0(1.0-11.0), P=0.04; postprandial: 15.5(10.0-33.0) vs. 22.0(17.0-58.0), P=0.007 for undistended and distended, respectively]. EGJ distension augments meal-induced triggering of TLESR in healthy volunteers. Our data suggest the existence of a population of vagal afferents located at sites in/around the EGJ that may influence triggering of TLESR. 相似文献
7.
Pal A Williams RB Cook IJ Brasseur JG 《American journal of physiology. Gastrointestinal and liver physiology》2003,285(5):G1037-G1048
Propulsion of a bolus through the upper esophageal sphincter (UES) is driven by a pressure drop in the direction of flow against frictional resisting force. Basic mechanics suggest that the axial rate of drop in intrabolus pressure (IBP), i.e., the intrabolus pressure gradient (IBPG), should be locally sensitive to abnormal constriction. We sought to quantify space-time patterns of IBP and IBPG that correlate with pathological disruption to transsphincteric bolus transport. High-resolution high-fidelity perfused manometry was applied concurrent with videofluoroscopy in 6 healthy controls and 10 patients with restricted UES opening and 4 bolus volumes. Pressures were interpolated spatially and displayed as space-time isocontours with bolus head and tail trajectories superimposed to identify the IBP domain. IBP and IBPG were averaged over an approximately steady period of transsphincteric flow. The axial location and magnitude of maximum IBPG were quantified for each swallow relative to the location of the abnormal restriction. We found that average hypopharyngeal IBP and locally maximal IBPG were significantly higher in the patient group (P < 0.001), whereas the maximum IBPG was insensitive to bolus volume, and the locations of maximum IBPG in the patient group were well correlated with axial locations of maximal UES constriction (r = 0.84, P < 0.01). Space-time structure of IBP and IBPG correlated qualitatively with swallow dysfunction. Because IBPG reflects pressure force driving the bolus against frictional force in the UES, IBPG reflects local changes in frictional resistance from pathological constriction during bolus flow. Consequently, the location and magnitude of IBPG reflect the existence and location of abnormal constriction, and IBP and IBPG structure reflect decompensation of the pharyngeal swallow. 相似文献
8.
Jiang Y Bhargava V Lal HA Mittal RK 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(6):G1014-G1019
Several studies from our laboratory show that axial stretch of the lower esophageal sphincter (LES) in an oral direction causes neurally mediated LES relaxation. Under physiological conditions, axial stretch of the LES is caused by longitudinal muscle contraction (LMC) of the esophagus. Because longitudinal muscle is composed of skeletal muscle in mice, vagal-induced LMC and LES relaxation are both blocked by pancuronium. We conducted studies in rats (thought to have skeletal muscle esophagus) to determine if vagus nerve-mediated LES relaxation is also blocked by pancuronium. LMC-mediated axial stretch on the LES was monitored using piezoelectric crystals. LES and esophageal pressures were monitored with a 2.5-Fr solid-state pressure transducer catheter. Following bilateral cervical vagotomy, the vagus nerve was stimulated electrically. LES, along with the esophagus, was harvested after in vivo experiments and immunostained for smooth muscle (smooth muscle α-actin) and skeletal muscle (fast myosin heavy chain). Vagus nerve-stimulated LES relaxation and esophageal LMC were reduced in a dose-dependent fashion and completely abolished by pancuronium (96 μg/kg) in six rats (group 1). On the other hand, in seven rats, LES relaxation and LMC were only blocked completely by a combination of pancuronium (group 2) and hexamethonium. Immunostaining revealed that the longitudinal muscle layer was composed of predominantly skeletal muscle in the group 1 rats. On the other hand, the longitudinal muscle layer of group 2 rats contained a significant amount of smooth muscle (P < 0.05). Our study shows tight coupling between axial stretch on the LES and relaxation of the LES, which suggests a cause and effect relationship between the two. We propose that the vagus nerve fibers that cause LMC induce LES relaxation through the stretch-sensitive activation of inhibitory motor neurons. 相似文献
9.
Huang SC 《Regulatory peptides》2011,167(2-3):246-249
Atrial natriuretic peptide (ANP) causes relaxation in the opossum lower esophageal sphincter. The effects of dendroaspis natriuretic peptide (DNP) and other natriuretic peptides in the lower esophageal sphincter were not known. We measured the relaxation of transverse strips from the guinea pig lower esophageal sphincter caused by DNP, ANP, brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and a natriuretic peptide receptor-C agonist des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANF(4-23)) in vitro. In resting strips of the guinea pig lower esophageal sphincter DNP and BNP caused marked relaxations. Furthermore, in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips, DNP caused marked and BNP caused moderate, concentration-dependent relaxations. ANP as well as CNP caused mild relaxations. In contrast, cANF(4-23) did not cause relaxation. The relative potencies for natriuretic peptides to cause relaxation were DNP>BNP>ANP>=CNP in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips. The DNP and BNP-induced relaxations were not affected by tetrodotoxin or atropine, suggesting that the natriuretic peptide-induced response was not neutrally mediated. In conclusion, these results demonstrate that natriuretic peptides cause the relaxation of the guinea pig lower esophageal sphincter. DNP is the most potent natriuretic peptide to cause lower esophageal sphincter relaxation, which might be mediated by natriuretic peptide receptor-A or a novel DNP-selective natriuretic peptide receptor. 相似文献
10.
Omari TI Ferris L Dejaeger E Tack J Vanbeckevoort D Rommel N 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(9):G909-G913
The measurement of the physical extent of opening of the upper esophageal sphincter (UES) during bolus swallowing has to date relied on videofluoroscopy. Theoretically luminal impedance measured during bolus flow should be influenced by luminal diameter. In this study, we measured the UES nadir impedance (lowest value of impedance) during bolus swallowing and assessed it as a potential correlate of UES diameter that can be determined nonradiologically. In 40 patients with dysphagia, bolus swallowing of liquids, semisolids, and solids was recorded with manometry, impedance, and videofluoroscopy. During swallows, the UES opening diameter (in the lateral fluoroscopic view) was measured and compared with automated impedance manometry (AIM)-derived swallow function variables and UES nadir impedance as well as high-resolution manometry-derived UES relaxation pressure variables. Of all measured variables, UES nadir impedance was the most strongly correlated with UES opening diameter. Narrower diameter correlated with higher impedance (r = -0.478, P < 0.001). Patients with <10 mm, 10-14 mm (normal), and ≥ 15 mm UES diameter had average UES nadir impedances of 498 ± 39 Ohms, 369 ± 31 Ohms, and 293 ± 17 Ohms, respectively (ANOVA P = 0.005). A higher swallow risk index, indicative of poor pharyngeal swallow function, was associated with narrower UES diameter and higher UES nadir impedance during swallowing. In contrast, UES relaxation pressure variables were not significantly altered in relation to UES diameter. We concluded that the UES nadir impedance correlates with opening diameter of the UES during bolus flow. This variable, when combined with other pharyngeal AIM analysis variables, may allow characterization of the pathophysiology of swallowing dysfunction. 相似文献
11.
The upper esophageal sphincter in the cat: the role of central innervation assessed by transient vagal blockade 总被引:2,自引:0,他引:2
R P Reynolds G W Effer M P Bendeck 《Canadian journal of physiology and pharmacology》1987,65(1):96-99
Studies were performed on four cats to assess the role of extrinsic innervation via the cervical nerve trunks in the control of upper esophageal sphincter function. Transient vagal nerve blockade was accomplished by cooling the cervical vagosympathetic nerve trunks previously isolated in skin loops on each side of the neck. Upper esophageal sphincter pressure was measured using a multilumen oval manometry tube and a rapid pull-through technique. The upper esophageal sphincter response to cervical intraesophageal balloon distention and acid perfusion was assessed. The feline upper esophageal sphincter has a distinct asymmetric pressure profile, whereby anterior pressure greater than posterior pressure greater than left pressure greater than right pressure. Bilateral vagal nerve blockade lowered the mean upper esophageal sphincter pressure from 18.5 +/- 1.5 to 12.0 +/- 2.8 mmHg (1 mmHg = 133.3 Pa) (p less than 0.001), with a significant reduction in pressure in all four quadrants. Intraesophageal balloon distention and acid perfusion both produced a significant increase in upper esophageal sphincter pressure. Bilateral vagal nerve blockade completely abolished the response of the upper esophageal sphincter to balloon distention and acid perfusion. We conclude that normal upper esophageal sphincter tone in the cat is partially mediated by excitatory neural input via the cervical nerve trunks, presumably via the recurrent laryngeal nerves; and cervical intraesophageal balloon distention and acid perfusion produce reflex contraction of the upper esophageal sphincter, which is dependent on neural pathways via the cervical vagal nerve trunks, but the relative contribution of afferent and efferent pathways remains unknown. 相似文献
12.
Liancai Mu Jun Wang Hungxi Su Ira Sanders 《The journal of histochemistry and cytochemistry》2007,55(3):199-207
The functional upper esophageal sphincter (UES) is composed of the cricopharyngeus muscle (CP), the most inferior part of the inferior pharyngeal constrictor (iIPC), and the upper esophagus (UE). This sphincter is collapsed and exhibits sustained muscle activity in the resting state; it only relaxes and opens during swallowing, vomiting, and belching. The tonic contractile properties of the UES suggest that the skeletal muscle fibers in this sphincter differ from those in the limb and trunk muscles. In this study, myosin heavy chain (MHC) composition in the adult human UES muscles obtained from autopsies was investigated using immunocytochemical and immunoblotting techniques. Results showed that the adult human UES muscle fibers expressed unusual MHC isoforms such as slow-tonic (MHC-ton), alpha-cardiac (MHC-alpha), neonatal (MHC-neo), and embryonic (MHC-emb), which coexisted with the major MHCs (i.e., MHCI, IIa, and IIx). MHC-ton and MHC-alpha were coexpressed predominantly with slow-type I MHC isoform, whereas MHC-neo and MHC-emb coexisted mainly with fast-type IIa MHC. A slow inner layer (SIL) and a fast outer layer (FOL) in the iIPC and CP were identified immunocytochemically. MHC-ton- and MHC-alpha-containing fibers were concentrated mainly in the SIL, whereas MHC-neo- and MHC-emb-containing fibers were distributed primarily to the FOL. Identification of the specialized muscle fibers and their distribution patterns in the adult human UES is valuable for a better understanding of the physiological and pathophysiological behaviors of the sphincter. 相似文献
13.
Kozaka T Ando M 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2003,173(2):135-140
To elucidate innervation in the upper esophageal sphincter (UES) muscle of the eel, a key muscle in swallowing, repetitive electrical field stimulation (EFS; 30 mA, 40 V, 300 micros, 10 Hz, 10 trains) was employed. Anatomically, the eel UES muscle consists of striated fibers. The EFS-induced contraction of the UES was completely blocked by tetrodotoxin and curare, and abolished in Ca2+ -free Ringer solution. These results suggest that the EFS stimulates nerve fibers specifically and releases acetylcholine as a neurotransmitter. In fact, acetylcholine and carbachol constricted the UES in a concentration-dependent manner. Even after blocking neuronal firing with tetrodotoxin, acetylcholine constricted the UES muscle, suggesting the existence of acetylcholine receptors on the UES muscle cells. Both EFS- and carbachol-evoked contractions of the UES were blocked by curare at a lower concentration than by atropine or hexamethonium, suggesting that the acetylcholine receptor is nicotinic. Even in Ca2+ -free Ringer solution, a direct current stimulus (2 s duration) constricted the UES muscle to an extent similar to that in the presence of Ca2+, indicating that the muscle contraction itself does not need extracellular Ca2+, i.e., the muscle can be constricted by a release of Ca2+ from the sarcoplasmic reticulum. 相似文献
14.
Watanabe Y Sakihara T Mukuda T Ando M 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2007,177(8):867-873
The effects of isotocin (IT) and vasotocin (VT), which are fish analogues of mammalian oxytocin and vasopressin respectively,
were examined in the isolated upper esophageal sphincter (UES) muscle. IT relaxed and VT constricted the UES muscle in a concentration-dependent
manner. The relaxation by IT and the contraction by VT were completely blocked by H-9405 (an oxytocin receptor antagonist)
and by H-5350 (a V1-receptor antagonist), respectively, suggesting that the eel UES possesses both IT and VT receptors. Truncated fragments of
VT did not show any significant effects, indicating that all nine residues are essential for the VT and IT actions. IT may
relax the UES muscle through enhancing cAMP production, since similar relaxation was also observed after treatment with 3-isobutyl-1-methylxantine,
forskolin and 8-bromoadenosine, 3′, 5′-cyclic mono-phosphate (8BrcAMP). Although 8-bromoguanosine, 3′, 5′-cyclic monophosphate
also relaxed the UES, its effect was less than 1/3 of that 8BrcAMP, suggesting minor contribution of nitric oxide (NO) in
the relaxation of the UES muscle. Both peptides seem to act directly on the UES muscle, not through release of other substances
from the epithelial cells, since similar relaxation and contraction were observed even in the scraped UES preparations. When
IT and VT were intravenously administrated (in vivo experiments), the drinking rate of the seawater eel was enhanced by IT
and was inhibited by VT. These effects correspond to the in vitro results described above, relaxation by IT and contraction
by VT in the UES muscle. The significance of the relaxing effect by IT is discussed with respect to controlling the drinking
behavior of the eel. 相似文献
15.
Sakihara T Watanabe Y Mukuda T Ando M 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2007,177(8):927-933
Isotocin is a fish analogue of the mammalian hormone oxytocin. To elucidate sites of action of isotocin (IT) in the upper
esophageal sphincter (UES) muscle, a key muscle in swallowing, IT was applied after treatment with tetrodotoxin (TTX). Even
after blocking nerve activity with TTX, IT relaxes the UES muscle in a concentration-dependent manner, suggesting that IT
receptor(s) is present on the muscle cells. Similar relaxation was also obtained by application of 3-isobutyl-1-methylxanthine
(IBMX), forskolin (FSK) and 8-bromo-adenosine, 3′,5′-cyclic monophosphate (8BrcAMP) after pretreatment with TTX, suggesting
that the relaxing effect (postsynaptic action) of IT may be mediated by cAMP. In contrast to such relaxing effect, IT enhanced
the UES contraction induced by repetitive electrical field stimulation (EFS). Such enhancement was blocked by an IT receptor
antagonist, suggesting that this effect is also mediated by IT receptor(s). Similar enhancement was also induced by IBMX,
FSK and 8BrcAMP, suggesting the enhancing effect is also mediated by cAMP. However, no enhancing effect of IT was observed
when the muscle was stimulated by carbachol, or after treatment with curare or TTX, denying the postsynaptic modulatory action
of IT and suggesting presynaptic action for IT, i.e., accelerating acetylcholine release. Summarizing these results, role
of IT in precisely regulating the drinking rate in the seawater eel is discussed. 相似文献
16.
Leslie E Bhargava V Mittal RK 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(5):G542-G547
A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3-5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons. 相似文献
17.
18.
19.
Electrical and mechanical properties of the distal canine lower esophageal sphincter were studied in vitro to investigate possible means of inducing pacemaker activity. Both direct excitation and block of potassium conductance were investigated. The acetylcholine analog, carbachol, induced tissue depolarization and increase in tone but no electrical slow waves. Tetraethylammonium (TEA) chloride induced depolarization and evoked continuous spiking activity and increase in tone. BaCl did not depolarize the tissue but low amplitude spiking activity developed and increased tone. The putative potassium channel blocker, aminacrine at 2 X 10(-4) M, induced electrical slow wave activity in the distal lower esophageal sphincter, with or without superimposed spikes, accompanied by phasic contractile activity. This activity closely resembled the spontaneous pacemaker activity observed previously in the proximal lower esophageal sphincter. The aminacrine-induced activity was abolished by calcium influx blockers. Aminacrine, but not TEA or BaCl, abolished the nonadrenergic nerve-mediated inhibitory junction potentials. In conclusion, block of inhibitory innervation, and induction of electrical slow waves as a control mechanism for phasic contractile activity, seems to require blockade of an aminacrine- but not TEA-sensitive potassium conductance. 相似文献