首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A data set of complete mitochondrial cytochrome b and 12S rDNA sequences is presented here for 17 representatives of Artiodactyla and Cetacea, together with potential outgroups (two Perissodactyla, two Carnivora, two Tethytheria, four Rodentia, and two Marsupialia). We include seven sequences not previously published from Hippopotamidae (Ancodonta) and Camelidae (Tylopoda), yielding a total of nearly 2.1 kb for both genes combined. Distance and parsimony analyses of each gene indicate that 11 clades are well supported, including the artiodactyl taxa Pecora, Ruminantia (with low 12S rRNA support), Tylopoda, Suina, and Ancodonta, as well as Cetacea, Perissodactyla, Carnivora, Tethytheria, Muridae, and Caviomorpha. Neither the cytochrome b nor the 12S rDNA genes resolve the relationships between these major clades. The combined analysis of the two genes suggests a monophyletic Cetacea +Artiodactyla clade (defined as "Cetartiodactyla"), whereas Perissodactyla, Carnivora, and Tethytheria fall outside this clade. Perissodactyla could represent the sister taxon of Cetartiodactyla, as deduced from resampling studies among outgroup lineages. Cetartiodactyla includes five major lineages: Ruminantia, Tylopoda, Suina, Ancodonta, and Cetacea, among which the phylogenetic relationships are not resolved. Thus, Suiformes do not appear to be monophyletic, justifying their split into the Suina and Ancodonta infraorders. An association between Cetacea and Hippopotamidae is supported by the cytochrome b gene but not by the 12S rRNA gene. Calculation of divergence dates suggests that the Cetartiodactyla could have diverged from other Ferungulata about 60 MYA.   相似文献   

2.
The sequence (16,829 nt) of the complete mitochondrial genome of the greater Indian rhinoceros, Rhinoceros unicornis, was determined. Like other perissodactyls studied (horse and donkey) the rhinoceros demonstrates length variation (heteroplasmy) associated with different numbers of repetitive motifs in the control region. The 16,829-nt variety of the molecule includes 36 identical control region motifs. The evolution of individual peptide-coding genes was examined by comparison with a distantly related perissodactyl, the horse, and the relationships among the orders Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) were examined on the basis of concatenated sequences of 12 mitochondrial peptide-coding genes. The phylogenetic analyses grouped Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) into a superordinal clade and within this clade a sister group relationship was recognized between Carnivora and Perissodactyla to the exclusion of Artiodactyla (+ Cetacea) . On the basis of the molecular difference between the rhinoceros and the horse and by applying as a reference to Artiodactyl/Cetacean divergence set at 60 million years ago (MYA), the evolutionary divergence between the families Rhinocerotidae and Equidae was dated to approximately 50 MYA.   相似文献   

3.
The complete mitochondrial (mt) genome of the mole Talpa europaea was sequenced and included in phylogenetic analyses together with another lipotyphlan (insectivore) species, the hedgehog Erinaceus europaeus, and 22 other eutherian species plus three outgroup taxa (two marsupials and a monotreme). The phylogenetic analyses reconstructed a sister group relationship between the mole and fruit bat Artibeus jamaicensis (order Chiroptera). The Talpa/Artibeus clade constitutes a sister clade of the cetferungulates, a clade including Cetacea, Artiodactyla, Perissodactyla, and Carnivora. A monophyletic relationship between the hedgehog and the mole was significantly rejected by maximum parsimony and maximum likelihood. Consistent with current systematic schemes, analyses of complete cytochrome b genes including the shrew Sorex araneus (family Soricidae) revealed a close relationship between Talpidae and Soricidae. The analyses of complete mtDNAs, along with the findings of other insectivore studies, challenge the maintenance of the order Lipotyphla as a taxonomic unit and support the elevation of the Soricomorpha (with the families Talpidae and Soricidae and possibly also the Solenodontidae and Tenrecidae) to the level of an order, as previously proposed in some morphological studies.  相似文献   

4.
Some previous analysis of mitochondrial proteins strongly support the Carnivora/Perissodactyla grouping excluding Cetartiodactyla (Artiodactyla + Cetacea) as an outgroup, but the support of the hypothesis remains equivocal from the analysis of several nuclear-encoded proteins. In order to evaluate the strength of the support by mitochondrial proteins, phylogenetic relationship among Carnivora, Perissodactyla, and Cetartiodactyla was estimated with the ML method by using the updated data set of the 12 mitochondrial proteins with several alternative models. The analyses demonstrate that the phylogenetic inference depends on the model used in the ML analysis; i.e., whether the site-heterogeneity is taken into account and whether the rate parameters are estimated for each individual proteins or for the concatenated sequences. Although the analysis of concatenated sequences strongly supports the Carnivora/Perissodactyla grouping, the total evaluation of the separate analyses of individual proteins, which approximates the data better than the concatenated analysis, gives only ambiguous results, and therefore it is concluded that more data are needed to resolve this trichotomy.  相似文献   

5.
Phylogenetic relationships of 25 mammalian species representing 17 of the 18 eutherian orders were examined using DNA sequences from a 1.2-kb region of the 5′ end of exon 1 of the single-copy nuclear gene known as interphotoreceptor retinoid binding protein (IRBP). A wide variety of methods of analysis of the DNA sequence, and of the translated products, all supported a five-order clade consisting of elephant shrew (Macroscelidea)/aardvark (Tubulidentata)/and the paenungulates (hyracoids, sirenians, and elephants), with bootstrap support in all cases of 100%. The Paenungulata was also strongly supported by these IRBP data. In the majority of analyses this monophyletic five-order grouping was the first branch off the tree after the Edentata. These results are highly congruent with two other recent sources of molecular data. Another superordinal grouping, with similar 100% bootstrap support in all of the same wide-ranging types of analyses, was Artiodactyla/Cetacea. Other superordinal affinities, suggested by the analyses, but with less convincing support, included a Perissodactyla/Artiodactyla/Cetacea clade, an Insectivora/Chiroptera clade, and Glires (an association of rodents and lagomorphs). Correspondence to: M. J. Stanhope  相似文献   

6.
Knowledge of the phylogenetic position of the order Cetacea (whales, dolphins, and porpoises) within Mammalia is of central importance to evolutionary biologists studying the transformations of biological form and function that accompanied the shift from fully terrestrial to fully aquatic life in this clade. Phylogenies based on molecular data and those based on morphological data both place cetaceans among ungulates but are incongruent in other respects. Morphologists argue that cetaceans are most closely related to mesonychians, an extinct group of terrestrial ungulates. They have disagreed, however, as to whether Perissodactyla (odd-toed ungulates) or Artiodactyla (even-toed ungulates) is the extant clade most closely related to Cetacea, and have long maintained that each of these orders is monophyletic. The great majority of molecule-based phylogenies show, by contrast, not only that artiodactyls are the closest extant relatives of Cetacea, but also that Artiodactyla is paraphyletic unless cetaceans are nested within it, often as the sister group of hippopotamids. We tested morphological evidence for several hypotheses concerning the sister taxon relationships of Cetacea in a maximum parsimony analysis of 123 morphological characters from 10 extant and 30 extinct taxa. We advocate treating certain multistate characters as ordered because such a procedure incorporates information about hierarchical morphological transformation. In all most-parsimonious trees, whether multistate characters are ordered or unordered, Artiodactyla is the extant sister taxon of Cetacea. With certain multistate characters ordered, the extinct clade Mesonychia (Mesonychidae + Hapalodectidae) is the sister taxon of Cetacea, and Artiodactyla is monophyletic. When all fossils are removed from the analysis, Artiodactyla is paraphyletic with Cetacea nested inside, indicating that inclusion of mesonychians and other extinct stem taxa in a phylogenetic analysis of the ungulate clade is integral to the recovery of artiodactyl monophyly. Phylogenies derived from molecular data alone may risk recovering inconsistent branches because of an inability to sample extinct clades, which by a conservative estimate, amount to 89% of the ingroup. Addition of data from recently described astragali attributed to cetaceans does not overturn artiodactyl monophyly.  相似文献   

7.
Phylogenetic analyses of DNA sequences were conducted to evaluate four alternative hypotheses of phrynosomatine sand lizard relationships. Sequences comprising 2871 aligned base pair positions representing the regions spanning ND1-COI and cyt b-tRNA(Thr) of the mitochondrial genome from all recognized sand lizard species were analyzed using unpartitioned parsimony and likelihood methods, likelihood methods with assumed partitions, Bayesian methods with assumed partitions, and Bayesian mixture models. The topology (Uma, (Callisaurus, (Cophosaurus, Holbrookia))) and thus monophyly of the "earless" taxa, Cophosaurus and Holbrookia, is supported by all analyses. Previously proposed topologies in which Uma and Callisaurus are sister taxa and those in which Holbrookia is the sister group to all other sand lizard taxa are rejected using both parsimony and likelihood-based significance tests with the combined, unparitioned data set. Bayesian hypothesis tests also reject those topologies using six assumed partitioning strategies, and the two partitioning strategies presumably associated with the most powerful tests also reject a third previously proposed topology, in which Callisaurus and Cophosaurus are sister taxa. For both maximum likelihood and Bayesian methods with assumed partitions, those partitions defined by codon position and tRNA stem and nonstems explained the data better than other strategies examined. Bayes factor estimates comparing results of assumed partitions versus mixture models suggest that mixture models perform better than assumed partitions when the latter were not based on functional characteristics of the data, such as codon position and tRNA stem and nonstems. However, assumed partitions performed better than mixture models when functional differences were incorporated. We reiterate the importance of accounting for heterogeneous evolutionary processes in the analysis of complex data sets and emphasize the importance of implementing mixed model likelihood methods.  相似文献   

8.
The phylogenetic relationships among Primates (human), Artiodactyla (cow), Cetacea (whale), Carnivora (seal), and Rodentia (mouse and rat) were estimated from the inferred amino acid sequences of the mitochondrial genomes using Marsupialia (opossum), Aves (chicken), and Amphibia (Xenopus) as an outgroup. The overall evidence of the maximum likelihood analysis suggests that Rodentia is an outgroup to the other four eutherian orders and that Cetacea and Artiodactyla form a clade with Carnivora as a sister taxon irrespective of the assumed model for amino acid substitutions. Although there remains an uncertainty concerning the relation among Artiodactyla, Cetacea, and Carnivora, the existence of a clade formed by these three orders and the outgroup status of Rodentia to the other eutherian orders seems to be firmly established. However, analyses of individual genes do not necessarily conform to this conclusion, and some of the genes reject the putatively correct tree with nearly 5% significance. Although this discrepancy can be due to convergent or parallel evolution in the specific genes, it was pointed out that, even without a particular reason, such a discrepancy can occur in 5% of the cases if the branching among the orders in question occurred within a short period. Due to uncertainty about the assumed model underlying the phylogenetic inference, this can occur even more frequently. This demonstrates the importance of analyzing enough sequences to avoid the danger of concluding an erroneous tree.  相似文献   

9.
We sequenced the protamine P1 gene (ca. 450 bp) from 20 bats (order Chiroptera) and the flying lemur (order Dermoptera). We compared these sequences with published sequences from 19 other mammals representing seven orders (Artiodactyla, Carnivora, Cetacea, Perissodactyla, Primates, Proboscidea, and Rodentia) to assess structure, base compositional bias, and phylogenetic utility. Approximately 80% of second codon positions were guanine, resulting in protamine proteins containing a high frequency of arginine residues. Our data indicate that codon usage for arginine differs among higher mammalian taxa. Parsimony analysis of 40 species representing nine orders produced a well-resolved tree in which most nodes were supported strongly, except at the lowest taxonomic levels (e.g., within Artiodactyla and Vespertilionidae). These data support monophyly of several taxa proposed by morphologic and molecular studies (all nine orders: Laurasiatheria, Cetartiodactytla, Yangochiroptera, Noctilionoidea, Rhinolophoidea, Vespertilionoidea, Phyllostomidae, Natalidae, and Vespertilionidae) and, in agreement with recent molecular studies, reject monophyly of Archonta, Volitantia, and Microchiroptera. Bats were sister to a clade containing Perissodactyla, Carnivora, and Cetartiodactyla, and, although not unequivocally, rhinolophoid bats (traditional microchiropterans) were sister to megachiropterans. Sequences of the protamine P1 gene are useful for resolving relationships at and above the familial level in bats, and generally within and among mammalian orders, but with some drawbacks. The coding and intervening sequences are small, producing few phylogenetically informative characters, and aligning the intron is difficult, even among closely related families. Given these caveats, the protamine P1 gene may be important to future systematic studies because its functional and evolutionary constraints differ from other genes currently used in systematic studies.  相似文献   

10.
The remarkable antiquity, diversity, and significance in the ecology and evolution of Cetartiodactyla have inspired numerous attempts to resolve their phylogenetic relationships. However, previous analyses based on limited samples of nuclear genes or mitochondrial DNA sequences have generated results that were either inconsistent with one another, weakly supported, or highly sensitive to analytical conditions. Here, we present strongly supported results based upon over 1.4 Mb of an aligned DNA sequence matrix from 110 single-copy nuclear protein-coding genes of 21 Cetartiodactyla species, which represent major Cetartiodactyla lineages, and three species of Perissodactyla and Carnivora as outgroups. Phylogenetic analysis of this newly developed genomic sequence data using a codon-based model and recently developed models of the rate autocorrelation resolved the phylogenetic relationships of the major cetartiodactylan lineages and of those lineages with a high degree of confidence. Cetacea was found to nest within Artiodactyla as the sister group of Hippopotamidae, and Tylopoda was corroborated as the sole base clade of Cetartiodactyla. Within Cetacea, the monophyletic status of Odontoceti relative to Mysticeti, the basal position of Physeteroidea in Odontoceti, the non-monophyly of the river dolphins, and the sister relationship between Delphinidae and Monodontidae + Phocoenidae were strongly supported. In particular, the groups of Tursiops (bottlenose dolphins) and Stenella (spotted dolphins) were validated as unnatural groups. Additionally, a very narrow time frame of ∼3 My (million years) was found for the rapid diversification of delphinids in the late Miocene, which made it difficult to resolve the phylogenetic relationships within the Delphinidae, especially for previous studies with limited data sets. The present study provides a statistically well-supported phylogenetic framework of Cetartiodactyla, which represents an important step toward ending some of the often-heated, century-long debate on their evolution.  相似文献   

11.
The data on phylogeny and early evolution of Cetartiodactyla are analyzed and a model for the initial stage of their history is proposed. It is shown that the roots of Cetartiodactyla go back to generalized Cretaceous terrestrial Eutheria, and a hypothetical basal group of Cetartiodactyla was probably ancestral to the orders Artiodactyla and Cetacea. The Artiodactyla-Cetacea divergence and adaptive radiation of Artiodactyla, which gave rise to the suborders Ruminantia, Tylopoda, and Suiformes, apparently occurred in the pre-Eocene time, earlier than 55 Ma. Molecular similarity between Hippopotamidae and Cetacea is evidence of common origin of Artiodactyla and Cetacea and adaptation to aquatic environment.  相似文献   

12.
Relationships among the major branches of moss phylogeny are understudied compared with other major land‐plant groups. We addressed this by surveying 14–17 plastid genes from taxa representing the major lineages, using different phylogenetic methods (parsimony, likelihood) and codon‐ and gene‐based data partitioning schemes (likelihood). Our phylogenetic inferences generally corroborated the best supported clades across multiple recent studies, with comparable or higher levels of clade support here. We resolved persistent ambiguities with strong to moderate support across analyses, including several early nodes in subclass Dicranidae, and relationships among other subclasses of peristomate mosses. In particular, we resolved a sister‐group relationship between Bryidae and Dicranidae, between these subclasses and Timiidae, and between this entire clade and Funariidae. We consistently recovered Tetraphidopsida (a nematodontous class) as the sister group of arthrodontous mosses (Bryopsida), although with only weak support. Strongly conflicting arrangements at the base of moss phylogeny concerning Takakiopsida and Sphagnopsida, two non‐peristomate moss lineages, were inferred in parsimony and likelihood analysis, but this depended on how base‐frequency parameters were estimated and how data were partitioned in likelihood analysis. Relationships inferred for the remaining peristomate and non‐peristomate moss clades, and their associated support values, were otherwise broadly congruent across analyses.  相似文献   

13.
We study the reliability of phylogeny based on four taxa, when the internal, ancestral, branch is short. Such a quartet approach has been broadly used for inferring phylogenetic patterns. The question of branching pattern between the suborders Ruminantia and Suiformes (order Artiodactyla) and the order Cetacea is chosen as an example. All the combinations of four taxa were generated by taking on and only one species per group under study (three ingroups and one outgroup). Using real sequences, the analysis of these combinations demonstrates that the quartet approach is seriously misleading. Using both maximum parsimony and distance methods, it is possible to find a quartet of species which provided a high bootstrap proportion for each of the three possible unrooted trees. With the same set of sequences, we used all the available species simultaneously to construct a molecular phylogeny. This approach proved much more reliable than the quartet approach. When the number of informative sites is rather low, the branching patterns are not supported through bootstrap analysis, preventing us from false inference due to the lack of information. The reliable resolution of the phylogenetic relationships among Ruminantia, Suiformes, and Cetacea will therefore require a large number of nucleotides, such as the complete mitochondrial genomes of at least 30 species.  相似文献   

14.
Reasonably correct phylogenies are fundamental to the testing of evolutionary hypotheses. Here, we present phylogenetic findings based on analyses of 67 complete mammalian mitochondrial (mt) genomes. The analyses, irrespective of whether they were performed at the amino acid (aa) level or on nucleotides (nt) of first and second codon positions, placed Erinaceomorpha (hedgehogs and their kin) as the sister group of remaining eutherians. Thus, the analyses separated Erinaceomorpha from other traditional lipotyphlans (e.g., tenrecs, moles, and shrews), making traditional Lipotyphla polyphyletic. Both the aa and nt data sets identified the two order-rich eutherian clades, the Cetferungulata (comprising Pholidota, Carnivora, Perissodactyla, Artiodactyla, and Cetacea) and the African clade (Tenrecomorpha, Macroscelidea, Tubulidentata, Hyracoidea, Proboscidea, and Sirenia). The study corroborated recent findings that have identified a sister-group relationship between Anthropoidea and Dermoptera (flying lemurs), thereby making our own order, Primates, a paraphyletic assembly. Molecular estimates using paleontologically well-established calibration points, placed the origin of most eutherian orders in Cretaceous times, 70-100 million years before present (MYBP). The same estimates place all primate divergences much earlier than traditionally believed. For example, the divergence between Homo and Pan is estimated to have taken place approximately 10 MYBP, a dating consistent with recent findings in primate paleontology.  相似文献   

15.
Xiao-Guang Yang 《Biologia》2009,64(4):811-818
The phylogeny of Cetacea (whales, dolphins, porpoises) has long attracted the interests of biologists and has been investigated by many researchers based on different datasets. However, some phylogenetic relationships within Cetacea still remain controversial. In this study, Bayesian analyses were performed to infer the phylogeny of 25 representative species within Cetacea based on their mitochondrial genomes for the first time. The analyses recovered the clades resolved by the previous studies and strongly supported most of the current cetacean classifications, such as the monophyly of Odontoceti (toothed whales) and Mysticeti (baleen whales). The analyses provided a reliable and comprehensive phylogeny of Cetacea which can provide a foundation for further exploration of cetacean ecology, conservation and biology. The results also showed that: (i) the mitochondrial genomes were very informative for inferring phylogeny of Cetacea; and (ii) the Bayesian analyses outperformed other phylogenetic methods on inferring mitochondrial genome-based phylogeny of Cetacea.  相似文献   

16.
Systematic and biogeographical relationships within the Hawaiian clade of the pantropical understory shrub genus Psychotria (Rubiaceae) were investigated using phylogenetic analysis of 18S-26S ribosomal DNA internal (ITS) and external (ETS) transcribed spacers. Phylogenetic analyses strongly suggest that the Hawaiian Psychotria are monophyletic and the result of a single introduction to the Hawaiian Islands. The results of phylogenetic analyses of ITS and ETS partitions alone give slightly different topologies among basal lineages of the Hawaiian clade; however, such differences are not well supported. Relationships in the section Straussia clade in particular are not well resolved because of few nucleotide changes on internal branches, suggesting extremely rapid radiation in the lineage. Parsimony and likelihood reconstructions of ancestral geographical distributions using the topologies inferred from both parsimony and likelihood analysis of combined data and using different combinations of models and branch lengths gave highly congruent results. However, for one internal node (corresponding to the majority of the "greenwelliae" clade), parsimony reconstructions were unable to distinguish between three possible island states, whereas likelihood reconstructions resulted in clear ordering of possible states, with the island of Oàhu slightly more probable than other islands under all but one model and branch length combination considered (the Jukes-Cantor-like model with branch lengths inferred under parsimony, under which conditions Maui Nui is more probable). A pattern of colonization from oldest to youngest islands was inferred from the phylogeny, using maximum parsimony and maximum likelihood. Additionally, a much higher incidence of intraisland versus interisland speciation was inferred.  相似文献   

17.
We concatenated sequences for four mitochondrial genes (12S rRNA, tRNA valine, 16S rRNA, cytochrome b) and four nuclear genes [aquaporin, alpha 2B adrenergic receptor (A2AB), interphotoreceptor retinoid-binding protein (IRBP), von Willebrand factor (vWF)] into a multigene data set representing 11 eutherian orders (Artiodactyla, Hyracoidea, Insectivora, Lagomorpha, Macroscelidea, Perissodactyla, Primates, Proboscidea, Rodentia, Sirenia, Tubulidentata). Within this data set, we recognized nine mitochondrial partitions (both stems and loops, for each of 12S rRNA, tRNA valine, and 16S rRNA; and first, second, and third codon positions of cytochrome b) and 12 nuclear partitions (first, second, and third codon positions, respectively, of each of the four nuclear genes). Four of the 21 partitions (third positions of cytochrome b, A2AB, IRBP, and vWF) showed significant heterogeneity in base composition across taxa. Phylogenetic analyses (parsimony, minimum evolution, maximum likelihood) based on sequences for all 21 partitions provide 99-100% bootstrap support for Afrotheria and Paenungulata. With the elimination of the four partitions exhibiting heterogeneity in base composition, there is also high bootstrap support (89-100%) for cow + horse. Statistical tests reject Altungulata, Anagalida, and Ungulata. Data set heterogeneity between mitochondrial and nuclear genes is most evident when all partitions are included in the phylogenetic analyses. Mitochondrial-gene trees associate cow with horse, whereas nuclear-gene trees associate cow with hedgehog and these two with horse. However, after eliminating third positions of A2AB, IRBP, and vWF, nuclear data agree with mitochondrial data in supporting cow + horse. Nuclear genes provide stronger support for both Afrotheria and Paenungulata. Removal of third positions of cytochrome b results in improved performance for the mitochondrial genes in recovering these clades.  相似文献   

18.
The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of suborder Suiformes. However, the monophyly of the suborder Ruminantia was not supported, and the branching pattern between Cetacea and the artiodactyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced, but the relationships between Artiodactyla, Cetacea, and Perissodactyla remained unresolved. Nevertheless, we found no support for a Perissodactyla + Hyracoidea clade, neither with distance approach, nor with parsimony reconstruction. The 12S rRNA was useful to solve intraordinal relationships among Ungulata, but it seemed to harbor too few informative positions to decipher the bushlike radiation of some Ungulata orders, an event which has most probably occurred in a short span of time between 55 and 70 MYA. Correspondence to: E. Douzery  相似文献   

19.
Many molecule-based phylogenetic analyses find that the mammalian order Artiodactyla (even-toed ungulates) is paraphyletic unless cetaceans (whales, dolphins, and porpoises) are nested within it, a hypothesis that runs contrary to traditional morphology-based ideas. Here I present a total evidence analysis of this question based on 10 extant and 27 extinct taxa, using two character data partitions: (i) skeletal data and (ii) neontological data (soft morphology, retroposons, and DNA sequences [γ-fibrinogen, β-casein, and κ-casein and mt cytochrome b ]). A sensitivity analysis varying gap cost and transversion/transition ratio over nine parameters was implemented in the sequence alignment and in the parsimony analysis. The two data partitions are significantly incongruent, and the neontological data partition includes over six times as many characters as the osteological data partition. The osteological data partition, however, samples almost three times more taxa, taxa that cannot be sampled for neontological data because they are extinct. Osteological data resulted in artiodactyl monophyly, and neontological data resulted in artiodactyl paraphyly over all nine parameters. In the total evidence analysis the parameter most congruent with the overall character data is unresolved as to the sister taxon of Cetacea; however, the Adams consensus tree favors the neontological result. Extinction of almost 90% of the clade and particularly poor knowledge of stem taxa at the base of Artiodactyla make resolution of conflicting molecule- and morphology-based phylogenetic signals particularly difficult.  相似文献   

20.
The phylogenetic position of Cetacea (whales, dolphins and porpoises) is an important exemplar problem for combined data parsimony analyses because the clade is ancient and includes many well‐known and relatively complete fossil species. We combined data for 71 terminal taxa (43 extinct/28 extant) to test where Cetacea fits within Cetartiodactyla, and where various fossil hoofed mammals (e.g., ?entelodonts, “?anthracotheriids” and ?mesonychians) are positioned. We scored 635 phenotypic characters (osteology, dentition, soft tissue, behavior), approximately three times the number of characters in the last major analysis of this clade, and combined these with > 40 000 molecular characters, including new data from 10 genes. The analysis supported a topology consistent with the majority of recently published molecular studies. Cetacea was the extant sister taxon of Hippopotamidae, followed successively by Ruminantia, Suina and Camelidae. Several extinct taxa were phylogenetically unstable, upsetting resolution of the strict consensus and limiting branch support, but the positions of several key fossils were consistently resolved. The wholly extinct ?Mesonychia was more closely related to Cetacea than was any “artiodactylan.”“?Anthracotheriids” were paraphyletic, and, with the exception of one species, were more closely related to Hippopotamidae than to any other living taxon. The total evidence analysis overturned a highly nested position for Moschus supported by molecular data alone. The character partition that could be scored for the fossil taxa (osteological and dental characters) included more informative characters than most molecular partitions in our analysis, and had the fewest missing data. The osteological–dental data alone, however, did not support inclusion of cetaceans within crown “Artiodactyla.” Recently discovered ankle bones from fossil whales reinforced the monophyly of Cetartiodactyla but provided no particular evidence of derived similarities between hippopotamids and fossil cetaceans that were not shared with other “artiodactylans”. © The Willi Hennig Society 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号