首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the works presented here is to analyze the alterations induced by acute ischemia-reperfusion and chronic ischemia on mitochondrial function, in relation to alterations on heart function. Parameters of mitochondrial function were assessed on skinned fibers coming from isolated perfused rat hearts. The effects of chronic ischemia were studied on a rat model of left descending coronary artery stenosis. Two key events observed after acute ischemia-reperfusion and chronic ischemia are the decrease (or the loss) of the stimulatory effect of creatine and the alteration of outer mitochondrial permeability to cytochrome c and ADP. Taken together, these effects indicate the alteration of the intermembrane space architecture leading to the loss of intracellular adenine nucleotides compartmentation and possibly of functional coupling of mitochondrial creatine kinase and adenine nucleotide translocase. These alterations result in the impairment of intracellular energy transfer (channeling) from mitochondria to ATP-utilizing sites located in the cytosol. This may play a significant role in ischemic injury and alterations in heart function. We show that these effects were prevented by effective cardioprotective strategies like ischemic preconditioning or pharmacological preconditioning by perfusion of mitochondrial ATP-sensitive potassium channel openers. We hypothesize that an open mitochondrial ATP-sensitive potassium channel during ischemia maintains the tight structure of the intermembrane space that is required to preserve the normal low outer membrane permeability to ADP and ATP.  相似文献   

2.
There is an emerging consensus that pharmacological opening of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel protects the heart against ischemia-reperfusion damage; however, there are widely divergent views on the effects of openers on isolated heart mitochondria. We have examined the effects of diazoxide and pinacidil on the bioenergetic properties of rat heart mitochondria. As expected of hydrophobic compounds, these drugs have toxic, as well as pharmacological, effects on mitochondria. Both drugs inhibit respiration and increase membrane proton permeability as a function of concentration, causing a decrease in mitochondrial membrane potential and a consequent decrease in Ca(2+) uptake, but these effects are not caused by opening mitochondrial K(ATP) channels. In pharmacological doses (<50 microM), both drugs open mitochondrial K(ATP) channels, and resulting changes in membrane potential and respiration are minimal. The increased K(+) influx associated with mitochondrial K(ATP) channel opening is approximately 30 nmol. min(-1). mg(-1), a very low rate that will depolarize by only 1-2 mV. However, this increase in K(+) influx causes a significant increase in matrix volume. The volume increase is sufficient to reverse matrix contraction caused by oxidative phosphorylation and can be observed even when respiration is inhibited and the membrane potential is supported by ATP hydrolysis, conditions expected during ischemia. Thus opening mitochondrial K(ATP) channels has little direct effect on respiration, membrane potential, or Ca(2+) uptake but has important effects on matrix and intermembrane space volumes.  相似文献   

3.
4.
The mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) has been assigned multiple roles in cell physiology and in cardioprotection. Each of these roles must arise from basic consequences of mitoK(ATP) opening that should be observable at the level of the mitochondrion. MitoK(ATP) opening has been proposed to have three direct effects on mitochondrial physiology: an increase in steady-state matrix volume, respiratory stimulation (uncoupling), and matrix alkalinization. Here, we examine the evidence for these hypotheses through experiments on isolated rat heart mitochondria. Using perturbation techniques, we show that matrix volume is the consequence of a steady-state balance between K+ influx, caused either by mitoK(ATP) opening or valinomycin, and K+ efflux caused by the mitochondrial K+/H+ antiporter. We show that increasing K+ influx with valinomycin uncouples respiration like a classical uncoupler with the important difference that uncoupling via K+ cycling soon causes rupture of the outer mitochondrial membrane and release of cytochrome c. By loading the potassium binding fluorescent indicator into the matrix, we show directly that K+ influx is increased by diazoxide and inhibited by ATP and 5-HD. By loading the fluorescent probe BCECF into the matrix, we show directly that increasing K+ influx with either valinomycin or diazoxide causes matrix alkalinization. Finally, by comparing the effects of mitoK(ATP) openers and blockers with those of valinomycin, we show that four independent assays of mitoK(ATP) activity yield quantitatively identical results for mitoK(ATP)-mediated K+ transport. These results provide decisive support for the hypothesis that mitochondria contain an ATP-sensitive K+ channel and establish the physiological consequences of mitoK(ATP) opening for mitochondria.  相似文献   

5.
We have previously provided evidence that diffusion of metabolites across the porin pores of mitochondrial outer membrane is hindered. A functional consequence of this diffusion limitation is the dynamic compartmentation of ADP in the intermembrane space. These earlier studies were done on isolated mitochondria suspended in isotonic media without macromolecules, in which intermembrane space of mitochondria is enlarged. The present study was undertaken to assess the diffusion limitation of outer membrane in the presence of 10% (w/v) dextran M20, in order to mimic the action of cytosolic macromolecules on mitochondria. Under these conditions, mitochondria have a more native, condensed configuration.Flux-dependent concentration gradients of ADP were estimated by measuring the ADP diffusion fluxes across the porin pores of isolated rat heart mitochondria incubated together with pyruvate kinase (PK), both of which compete for ADP regenerated by mitochondrial creatine kinase (mtCK) within the intermembrane space or by yeast hexokinase (HK) extramitochondrially. From diffusion fluxes and bulk phase concentrations of ADP, its concentrations in the intermembrane space were calculated using Fick's law of diffusion. Flux-dependent gradients up to 23 microM ADP (for a diffusion rate of J(Dif)=1.9 micromol ADP/min/mg mitochondrial protein) were observed. These gradients are about twice those estimated in the absence of dextran and in the same order of magnitude as the cytosolic ADP concentration (30 microM), but they are negligibly low for cytosolic ATP (5 mM). Therefore, it is concluded that the dynamic ADP compartmentation is of biological importance for intact heart cells.If mtCK generates ADP within the intermembrane space, the local ADP concentration can be clearly higher than in the cytosol resulting in higher extramitochondrial phosphorylation potentials. In this way, mtCK contributes to ensure optimal kinetic conditions for ATP-splitting reactions in the extramitochondrial compartment.  相似文献   

6.
Summary Cytosolic proteins as components of the physiological mitochondrial environment were substituted by dextrans added to media normally used for incubation of isolated mitochondria. Under these conditions the volume of the intermembrane space decreases and the contact sites between the both mitochondrial membranes increase drastically. These morphological changes are accompanied by a reduced permeability of the mitochondrial outer compartment for adenine nucleotides as it was shown by extensive kinetic studies of mitochondrial enzymes (oxidative phosphorylation, mi-creatine kinase, mi-adenylate kinase). The decreased permeability of the mitochondrial outer membrane causes increased rate dependent concentration gradients in the micromolar range for adenine nucleotides between the intermembrane space and the extramitochondrial space. Although all metabolites crossing the outer membrane exhibit the same concentration gradients, considerable compartmentations are detectable for ADP only due to its low extramitochondrial concentration. The consequences of ADP-compartmentation in the mitochondrial intermembrane space for ADP-channelling into the mitochondria are discussed.  相似文献   

7.
In previous study we demonstrated the presence of ATP-sensitive potassium current in the inner mitochondrial membrane, which was sensitive to diazoxide and glybenclamide, in mitochondria isolated from the rat uterus. This current was supposed to be operated by mitochondrial ATP-sensitive potassium channel (mitoK(ATP)). Regulation of the mitoK(ATP) in uterus cells is not studied well enough yet. It is well known that the reactive oxygen species (ROS) can play a dual role. They can damage cells in high concentrations, but they can also act as messengers in cellular signaling, mediating survival of cells under stress conditions. ROS are known to activate mitoK(ATP) during the oxidative stress in the brain and heart, conferring the protection of cells. The present study examined whether ROS mediate the mitoK(ATP) activation in myometrium cells. Oxidative stress was induced by rotenone. ROS generation was measured by 2',7'-dichlorofluorescin diacetate. The massive induction of ROS production was demonstrated in the presence of rotenone. Hyperpolarization of the mitochondrial membrane was also detected with the use of the potential-sensitive dye DiOC6 (3,3'-dihexyloxacarbocyanine iodide). Diazoxide, a selective activator of mitoK(ATP), depolarized mitochondrial membrane either under oxidative stress or under normal conditions, while mitoK(ATP) blocker glybenclamide effectively restored mitochondrial potential in rat myocytes. Estimated value for diazoxide to mitoK(ATP) under normoxia was four times higher than under oxidative stress conditions: 5.01 +/- 1.47-10(-6) M and 1.24 +/- 0.21 x 10(-6) M respectively. The ROS scavenger N-acetylcysteine (NAC) successfully eliminates depolarization of mitochondrial membrane by diazoxide under oxidative stress. These results suggest that elimination of ROS by NAC prevents the activation of mitoK(ATP) under oxidative stress. Taking into account the higher affinity of diazoxide to mitoK(ATP) under stress conditions than under normoxia, we conclude that the oxidative stress conditions are more favourable than normoxia for the activation of mitoK(ATP). Thus we hypothesize that the ROS regulate the activity of the mitoK(ATP) in myocytes.  相似文献   

8.
Pharmacological mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening protects against ischemic damage and mimics ischemic preconditioning. However, physiological and pathological signaling events that open this channel are still not fully understood. We found that catalase, which removes H(2)O(2), is capable of reversing the beneficial effects of ischemic preconditioning but not of mitoK(ATP) agonist diazoxide. On the other hand, 2-mercaptopropionylglycine prevented cardioprotection in both cases, suggesting that this compound may present effects other than scavenging of reactive oxygen species. Indeed, 2-mercaptopropionylglycine and a second thiol-reducing agent, dithiothreitol, impair diazoxide-mediated activation of mitoK(ATP) in isolated heart mitochondria. This demonstrates that mitoK(ATP) activity is regulated by thiol redox status. Furthermore, stimulating the generation of endogenous mitochondrial reactive oxygen species or treating samples with H(2)O(2) strongly enhances mitoK(ATP) activity, in a manner probably dependent on redox sensors located in the channel's sulfonylurea receptor. We also demonstrate that mitoK(ATP) channel activity effectively prevents mitochondrial reactive oxygen release. Collectively, our results suggest that mitoK(ATP) acts as a reactive oxygen sensor that decreases mitochondrial free radical generation in response to enhanced local levels of oxidants. As a result, these channels regulate mitochondrial redox state under physiological conditions and prevent oxidative stress under pathological conditions such as ischemia/reperfusion.  相似文献   

9.
Protection of heart against ischemia-reperfusion injury by ischemic preconditioning and K(ATP) channel openers is known to involve the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Brain is also protected by ischemic preconditioning and K(ATP) channel openers, and it has been suggested that mitoK(ATP) may also play a key role in brain protection. However, it is not known whether mitoK(ATP) exists in brain mitochondria, and, if so, whether its properties are similar to or different from those of heart mitoK(ATP). We report partial purification and reconstitution of a new mitoK(ATP) from rat brain mitochondria. We measured K(+) flux in proteoliposomes and found that brain mitoK(ATP) is regulated by the same ligands as those that regulate mitoK(ATP) from heart and liver. We also examined the effects of opening and closing mitoK(ATP) on brain mitochondrial respiration, and we estimated the amount of mitoK(ATP) by means of green fluorescence probe BODIPY-FL-glyburide labeling of the sulfonylurea receptor of mitoK(ATP) from brain and liver. Three independent methods indicate that brain mitochondria contain six to seven times more mitoK(ATP) per milligram of mitochondrial protein than liver or heart.  相似文献   

10.
Mitochondrial membrane potential (DeltaPsi(m)) is severely compromised in the myocardium after ischemia-reperfusion and triggers apoptotic events leading to cell demise. This study tests the hypothesis that mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel activation prevents the collapse of DeltaPsi(m) in myocytes during anoxia-reoxygenation (A-R) and is responsible for cell protection via inhibition of apoptosis. After 3-h anoxia and 2-h reoxygenation, the cultured myocytes underwent extensive damage, as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis, and decreased ATP concentration. Mitochondria in A-R myocytes were swollen and fuzzy as shown after staining with Mito Tracker Orange CMTMRos and in an electron microscope and exhibited a collapsed DeltaPsi(m), as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Cytochrome c was released from mitochondria into the cytosol as demonstrated by cytochrome c immunostaining. Activation of mitoK(ATP) channel with diazoxide (100 micromol/l) resulted in a significant protection against mitochondrial damage, ATP depletion, cytochrome c loss, and stabilized DeltaPsi(m). This protection was blocked by 5-hydroxydecanoate (500 micromol/l), a mitoK(ATP) channel-selective inhibitor, but not by HMR-1098 (30 micromol/l), a putative sarcolemmal K(ATP) channel-selective inhibitor. Dissipation of DeltaPsi(m) also leads to opening of mitochondrial permeability transition pore, which was prevented by cyclosporin A. The data support the hypothesis that A-R disrupts DeltaPsi(m) and induces apoptosis, which are prevented by the activation of the mitoK(ATP) channel. This further emphasizes the therapeutic significance of mitoK(ATP) channel agonists in the prevention of ischemia-reperfusion cell injury.  相似文献   

11.
Mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening was shown previously to slightly increase respiration and decrease the membrane potential by stimulating K(+) cycling across the inner membrane. Here we show that mitoK(ATP) opening reduces reactive oxygen species generation in heart, liver and brain mitochondria. Decreased H(2)O(2) release is observed when mitoK(ATP) is active both with respiration stimulated by oxidative phosphorylation and when ATP synthesis is inhibited. In addition, decreased H(2)O(2) release is observed when mitochondrial Delta pH is enhanced, an effect expected to occur when mitoK(ATP) is open. We conclude that mitoK(ATP) is an effective pathway to trigger mild uncoupling, preventing reactive oxygen species release.  相似文献   

12.
二氮嗪在长时程心脏低温保存中的作用   总被引:7,自引:1,他引:6  
Guo W  Shen YL  Chen YY  Hu ZB  Yan ZK  Xia Q 《生理学报》2004,56(5):632-638
延长心脏的体外有效保存时间对临床心脏移植具有重要意义。本文旨在研究线粒体ATP敏感性钾通道开放剂二氮嗪(diazoxide,DE)在离体大鼠心脏长时程低温保存中的作用。SD大鼠随机分成5组,包括对照组(单纯Celsior保存液),DE组(Celsior液中含15、30或45μmol/L的DE)和DE 5-HD组[Celsior液中含30μmol/L的DE和100μmol/L的5-羟基葵酸盐(5-hydroxydecanoate,5-HD)]。利用Langendorff离体鼠心灌注法,观察心脏在4℃条件下保存10h后,复灌期血流动力学恢复、冠脉流出液中心肌酶漏出量及心肌水含量变化,并做心肌超微结构检查。结果显示:与对照组比较,DE处理后,复灌期的左心室舒张末期压力明显降低,心率、左心室发展压、左心室压力变化率、冠脉流出量等的恢复率在多个复灌时间点上优于对照组,且能显著减少复灌过程中心肌酶(乳酸脱氢酶、磷酸肌酸激酶及谷草转氨酶)的漏出量,降低心肌水含量;其中30和45μmol/LDE组的保护作用优于15μmol/LDE组;电镜结果显示DE对长时程低温保存心脏的超微结构有较好的保护作用。DE的上述作用可被线粒体ATP敏感性钾通道的特异性阻断剂5-HD所取消。以上结果提示:DE可通过激活线粒体ATP敏感性钾通道显著改善离体大鼠心脏长时程低温保存效果。  相似文献   

13.
Rossi  A.  Kay  L.  Saks  V. 《Molecular and cellular biochemistry》1998,184(1-2):401-408
Our aim was to carefully analyse the time-dependent changes that affect the mitochondrial function of myocardial cells during and after an ischemic episode. To this end, variables characterizing mitochondrial function have been evaluated on myocardial samples from isolated rat hearts subjected to different conditions of ischemia. The technique of permeabilized fibers was used in order to evaluate the mitochondrial function whilst retaining intracellular structure.The earliest alteration that could be detected was a decrease in the stimulatory effect of creatine on mitochondrial respiration. This alteration became more pronounced as the severity (or duration) of the ischemia increased. Afterwards, a significant decrease in the apparent Km of mitochondrial respiration for ADP also appeared, followed by a diminution of the maximal respiration rate which was partly restored by adding cytochrome c. Finally, for the most severe conditions of ischemia, the basal respiratory rate also increased. These observations are indicative of a sequence of alterations affecting first the intermembrane space, then the outer mitochondrial membrane, and finally the inner membrane. The discussion is focused on the very early alterations, that could not be detected using the conventional techniques of isolated mitochondria. We postulate that these alterations to the intermembrane space and outer mitochondrial membrane can induce disturbances both in the channelling of energy from the mitochondria, and on the signalling towards the mitochondria. The potential consequences on the regulation of the production of energy (ATP, PC) by the mitochondria are evoked.  相似文献   

14.
The ATP-sensitive potassium channel from the inner mitochondrial membrane (mitoK(ATP)) is a highly selective conductor of K(+) ions. When isolated in the presence of nonionic detergent and reconstituted in liposomes, mitoK(ATP) is inhibited with high affinity by ATP (K((1/2)) = 20-30 microM). We have suggested that holo-mitoK(ATP) is a heteromultimer consisting of an inwardly rectifying K(+) channel (mitoKIR) and a sulfonylurea receptor (Grover, G. J., and Garlid, K. D. (2000) J. Mol. Cell. Cardiol. 32, 677-695). Here, we show that a 55-kDa protein isolated by ethanol extraction and reconstituted in bilayer lipid membranes and liposomes is the mitoKIR. This protein, which lacks the sulfonylurea receptor subunit, is inhibited with low affinity by ATP, with K(1/2) approximately 550 microM. ATP inhibition of both mitoKIR and holo-mitoK(ATP) is reversed by UDP (K((1/2))1/2 = 10-15 microM). Holo-mitoK(ATP) is and diazoxide, and the opened by cromakalim flux through the open channel is inhibited by glibenclamide and 5-hydroxydecanoate. None of these agents has any effect upon mitoKIR. We have identified two compounds that act specifically on mitoKIR. p-diethylaminoethylbenzoate reverses inhibition of mitoKIR by ATP and ADP at micromolar concentrations and also opens mitoK(ATP) in isolated mitochondria. Tetraphenylphosphonium inhibits K(+) flux through both mitoKIR and mitoK(ATP) with the same apparent affinity. These findings support the hypothesis that the 55-kDa mitoKIR is the channel component of mitoK(ATP).  相似文献   

15.
We showed recently that mitochondrial ATP-dependent K(+) channel (mitoK(ATP)) opening is required for the inotropic response to ouabain. Because mitoK(ATP) opening is also required for most forms of cardioprotection, we investigated whether exposure to ouabain was cardioprotective. We also began to map the signaling pathways linking ouabain binding to Na(+)-K(+)-ATPase with the opening of mitoK(ATP). In Langendorff-perfused rat hearts, 10-80 microM ouabain given before the onset of ischemia resulted in cardioprotection against ischemia-reperfusion injury, as documented by an improved recovery of contractile function and a reduction of infarct size. In skinned cardiac fibers, a ouabain-induced protection of mitochondrial outer membrane integrity, adenine nucleotide compartmentation, and energy transfer efficiency was evidenced by a decreased release of cytochrome c and preserved half-saturation constant of respiration for ADP and adenine nucleotide translocase-mitochondrial creatine kinase coupling, respectively. Ouabain-induced positive inotropy was dose dependent over the range studied, whereas ouabain-induced cardioprotection was maximal at the lowest dose tested. Compared with bradykinin (BK)-induced preconditioning, ouabain was equally efficient. However, the two ligands clearly diverge in the intracellular steps leading to mitoK(ATP) opening from their respective receptors. Thus BK-induced cardioprotection was blocked by inhibitors of cGMP-dependent protein kinase (PKG) or guanylyl cyclase (GC), whereas ouabain-induced protection was not blocked by either agent. Interestingly, however, ouabain-induced inotropy appears to require PKG and GC. Thus 5-hydroxydecanoate (a selective mitoK(ATP) inhibitor), N-(2-mercaptopropionyl)glycine (MPG; a reactive oxygen species scavenger), ODQ (a GC inhibitor), PP2 (a src kinase inhibitor), and KT-5823 (a PKG inhibitor) abolished preconditioning by BK and blocked the inotropic response to ouabain. However, only PP2, 5-HD, and MPG blocked ouabain-induced cardioprotection.  相似文献   

16.
Opening the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) increases levels of reactive oxygen species (ROS) in cardiomyocytes. This increase in ROS is necessary for cardioprotection against ischemia-reperfusion injury; however, the mechanism of mitoK(ATP)-dependent stimulation of ROS production is unknown. We examined ROS production in suspensions of isolated rat heart and liver mitochondria, using fluorescent probes that are sensitive to hydrogen peroxide. When mitochondria were treated with the K(ATP) channel openers diazoxide or cromakalim, their ROS production increased by 40-50%, and this effect was blocked by 5-hydroxydecanoate. ROS production exhibited a biphasic dependence on valinomycin concentration, with peak production occurring at valinomycin concentrations that catalyze about the same K(+) influx as K(ATP) channel openers. ROS production decreased with higher concentrations of valinomycin and with all concentrations of a classical protonophoretic uncoupler. Our studies show that the increase in ROS is due specifically to K(+) influx into the matrix and is mediated by the attendant matrix alkalinization. Myxothiazol stimulated mitoK(ATP)-dependent ROS production, whereas rotenone had no effect. This indicates that the superoxide originates in complex I (NADH:ubiquinone oxidoreductase) of the electron transport chain.  相似文献   

17.
Although mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels have been reported to reduce the extent of apoptosis, the critical timing of mitoK(ATP) channel opening required to protect myocytes against apoptosis remains unclear. In the present study, we examined whether the mitoK(ATP) channel serves as a trigger of cardioprotection against apoptosis induced by oxidative stress. Apoptosis of cultured neonatal rat cardiomyocytes was determined by flow cytometry (light scatter and propidium iodide/annexin V-FITC fluorescence) and by nuclear staining with Hoechst 33342. Mitochondrial membrane potential (DeltaPsi) was measured by flow cytometry of cells stained with rhodamine-123 (Rh-123). Exposure to H(2)O(2) (500 microM) induced apoptosis, and the percentage of apoptotic cells increased progressively and peaked at 2 h. This H(2)O(2)-induced apoptosis was associated with the loss of DeltaPsi, and the time course of decrease in Rh-123 fluorescence paralleled that of apoptosis. Pretreatment of cardiomyocytes with diazoxide (100 microM), a putative mitoK(ATP) channel opener, for 30 min before exposure to H(2)O(2) elicited transient and mild depolarization of DeltaPsi and consequently suppressed both apoptosis and DeltaPsi loss after 2-h exposure to H(2)O(2). These protective effects of diazoxide were abrogated by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microM) but not by the sarcolemmal K(ATP) channel blocker HMR-1098 (30 microM). Our results suggest for the first time that diazoxide-induced opening of mitoK(ATP) channels triggers cardioprotection against apoptosis induced by oxidative stress in rat cardiomyocytes.  相似文献   

18.
Activation of protein kinase Cepsilon (PKCepsilon), opening of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)), and increased mitochondrial reactive oxygen species (ROS) are key events in the signaling that underlies cardioprotection. We showed previously that mitoK(ATP) is opened by activation of a mitochondrial PKCepsilon, designated PKCepsilon1, that is closely associated with mitoK(ATP). mitoK(ATP) opening then causes an increase in ROS production by complex I of the respiratory chain. This ROS activates a second pool of PKCepsilon, designated PKCepsilon2, which inhibits the mitochondrial permeability transition (MPT). In the present study, we measured mitoK(ATP)-dependent changes in mitochondrial matrix volume to further investigate the relationships among PKCepsilon, mitoK(ATP), ROS, and MPT. We present evidence that 1) mitoK(ATP) can be opened by H(2)O(2) and nitric oxide (NO) and that these effects are mediated by PKCepsilon1 and not by direct actions on mitoK(ATP), 2) superoxide has no effect on mitoK(ATP) opening, 3) exogenous H(2)O(2) or NO also inhibits MPT opening, and both compounds do so independently of mitoK(ATP) activity via activation of PKCepsilon2, 4) mitoK(ATP) opening induced by PKG, phorbol ester, or diazoxide is not mediated by ROS, and 5) mitoK(ATP)-generated ROS activates PKCepsilon1 and induces phosphorylation-dependent mitoK(ATP) opening in vitro and in vivo. Thus mitoK(ATP)-dependent mitoK(ATP) opening constitutes a positive feedback loop capable of maintaining the channel open after the stimulus is no longer present. This feedback pathway may be responsible for the lasting protective effect of preconditioning, colloquially known as the memory effect.  相似文献   

19.
We have investigated the presence of diazoxide- and nicorandil-activated K+ channels in rat skeletal muscle. Activation of potassium transport in the rat skeletal muscle myoblast cell line L6 caused a stimulation of cellular oxygen consumption, implying a mitochondrial effect. Working with isolated rat skeletal muscle mitochondria, both potassium channel openers (KCOs) stimulate respiration, depolarize the mitochondrial inner membrane and lead to oxidation of the mitochondrial NAD-system in a strict potassium-dependent manner. This is a strong indication for KCO-mediated stimulation of potassium transport at the mitochondrial inner membrane. Moreover, the potassium-specific effects of both diazoxide and nicorandil on oxidative phosphorylation in skeletal muscle mitochondria were completely abolished by the antidiabetic sulfonylurea derivative glibenclamide, a well-known inhibitor of ATP-regulated potassium channels (K(ATP) channels). Since both diazoxide and nicorandil facilitated swelling of de-energised mitochondria in KSCN buffer at the same concentrations, our results implicate the presence of a mitochondrial ATP-regulated potassium channel (mitoK(ATP) channel) in rat skeletal muscle which can modulate mitochondrial oxidative phosphorylation.  相似文献   

20.
The diffusion of metabolites across the outer mitochondrial membrane is essential for coupled cellular respiration. The outer membrane of mitochondria isolated from growth factor-deprived cells is impaired in its ability to exchange metabolic anions. When added to mitochondria, recombinant Bcl-x(L) restores metabolite exchange across the outer membrane without inducing the loss of cytochrome c from the intermembrane space. Restoration of outer membrane permeability to anionic metabolites does not occur directly through Bcl-x(L) ion channels. Instead, recombinant Bcl-x(L) maintains the outer mitochondrial membrane channel, VDAC, in an open configuration. Consistent with these findings, when ADP-induced oxidative phosphorylation is limited by exogenous beta-NADH, recombinant Bcl-x(L) can sustain outer mitochondrial membrane permeability to ADP. beta-NADH limits respiration by promoting the closed configuration of VDAC. Together these results demonstrate that following an apoptotic signal, Bcl-x(L) can maintain metabolite exchange across the outer mitochondrial membrane by inhibiting VDAC closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号