首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of muscle dimensions on economy (force-time integral divided by the amount of energy utilized) was investigated in male rats (body mass range 95-490 g), anaesthetized with pentobarbital. The medial gastrocnemius muscle in situ performed 6 maximal isometric contractions of 350 ms duration (1.s-1) at twitch optimum length at 35 degrees C. The areas under the 6 time-force curves were added to obtain force-time integral of the experiment. Differences of concentrations of ATP, phosphocreatine and lactate between experimental and contralateral (resting) muscles were used to calculate high-energy phosphate consumption due to stimulation. Muscle mass and cross-sectional area increased (approximately +400% and +300%, respectively) over the rat body mass range studied. Muscle length and length of the most distal fibre bundle increased by approximately 17 mm and 4 mm, respectively. Force-time integral (N.s) increased proportional to cross-sectional area whereas high-energy phosphate consumption (mumoles) increased proportional to muscle mass. The relative fraction of the total energy consumption utilized for force-independent processes was independent of rat body mass. The economy of the actomyosin system was unaffected during growth, whereas economy of the whole muscle decreased during growth by approximately 30% (p less than 0.001). The effect of muscle dimensions on economy is discussed with respect to human endurance capacity measured by voluntary isometric contractions.  相似文献   

2.
We describe a unique work-loop calorimeter with which we can measure, simultaneously, the rate of heat production and force-length work output of isolated cardiac trabeculae. The mechanics of the force-length work-loop contraction mimic those of the pressure-volume work-loops experienced by the heart. Within the measurement chamber of a flow-through microcalorimeter, a trabecula is electrically stimulated to respond, under software control, in one of three modes: fixed-end, isometric, or isotonic. In each mode, software controls the position of a linear motor, with feedback from muscle force, to adjust muscle length in the desired temporal sequence. In the case of a work-loop contraction, the software achieves seamless transitions between phases of length control (isometric contraction, isometric relaxation, and restoration of resting muscle length) and force control (isotonic shortening). The area enclosed by the resulting force-length loop represents the work done by the trabecula. The change of enthalpy expended by the muscle is given by the sum of the work term and the associated amount of evolved heat. With these simultaneous measurements, we provide the first estimation of suprabasal, net mechanical efficiency (ratio of work to change of enthalpy) of mammalian cardiac trabeculae. The maximum efficiency is at the vicinity of 12%.  相似文献   

3.
The purpose of this study was to examine the effects of stretching and shortening on the isometric forces at different lengths on the descending limb of the force-length relationship. Cat soleus (N = 10) was stretched and shortened by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these dynamic contractions were compared to the isometric forces at the corresponding muscle lengths. We found a shift of the force-length relationship to greater force values following muscle stretching, and to smaller force values following muscle shortening. Shifts in both directions critically depended on the magnitude of stretching/shortening and the final muscle length. We confirm recent findings that the steady-state isometric force following some stretch conditions clearly exceeded the maximal isometric forces at optimum muscle length, and that force enhancement was associated with an increase in the passive force, i.e., a passive force enhancement. When the passive force enhancement was subtracted from the total force enhancement, forces following stretch were always equal to or smaller than the isometric force at optimum muscle length. Together, these findings led to the conclusions: (a). that force enhancement is composed of an "active and a "passive" component; (b). that the "passive" component of force enhancement allows for forces greater than the maximal isometric forces at the muscle's optimum length; and (c). that force enhancement and force depression are critically affected by muscle length and stretch/shortening amplitude.  相似文献   

4.
Edman et al. (J. General Physiol. 80 (1982) 769) observed in single fibres of frog that the steady-state forces following active fibre stretch were greater than the purely isometric force obtained at the length from which the stretch was initiated. Operating on the descending limb of the force-length relationship, such a result can only be explained within the framework of the sarcomere length non-uniformity theory, if some fibre segments shortened during the fibre stretch. However, such a result was not found, leaving Edman's observation unexplained. Force enhancement above the initial isometric force has not been investigated systematically in whole muscle, and therefore it is not known whether this property is also part of whole muscle mechanics. The purpose of this study was to test if the steady-state forces following active stretch of cat semitendinosus were greater than the corresponding purely isometric forces at the muscle length from which the stretch was started. Cat semitendinosus was stretched by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these stretches were compared to the corresponding isometric forces at the initial and final muscle lengths. In 109 of 131 tests, the steady-state forces following stretching were greater than the isometric forces at the initial muscle lengths. Force enhancement increased with increasing amounts of stretching, and force enhancement above the initial isometric force was more likely to occur following stretches of great compared to small amplitude. Passive forces following active muscle stretching were often significantly greater than the passive forces at the same muscle length following an isometric contraction or a passive stretching of the muscle. This observation was made consistently at the longest muscle lengths tested. It appears, therefore, that there is a passive force that accounts for part of the force enhancement above the isometric force at the initial muscle length, and that provides increased passive force when a muscle is actively, rather than passively, stretched at long muscle lengths. We conclude that cat semitendinosus demonstrates steady-state force enhancement above the corresponding purely isometric force at the initial muscle length on the descending limb of the force-length relationship for many contractile conditions, and that a unique, and so far undetected, passive, parallel element contributes to this force enhancement, particularly at long muscle lengths where muscle is assumed to be most vulnerable to injuries associated with sarcomere length instability.  相似文献   

5.
The contractile properties of the tibial anterior (TA) of Wistar rats were measured by means of a multipurpose testing machine. The muscle was isolated from the connective tissues, preserving the proximal insertion. The distal tendon was transected and fixed to the machine actuator. The leg was inmobilised using a pin drilled through the femoral condyle. In this way the force response was studied in vivo at different constant lengths for some voltages and frequencies. Mathematical functions are proposed for adjusting the force-length, force-frequency and force-time relations. The model includes a novel formulation for the depression response during muscle tetanisation.  相似文献   

6.
We recently found that force enhancement following active stretch in skeletal muscles is accompanied by an increase in passive force following deactivation (J. Exp. Biol. 205 (2002) 1275). However, it is not known if this increase in passive force contributes to the force enhancement observed in the active muscle, and if it is observed at all muscle lengths. The purposes of this study were to quantify the amount of passive force increase as a function of muscle lengths, and to determine if this passive force contributes to the force enhancement observed in the active muscle. Experiments were performed on cat soleus (n = 24) using techniques published previously (J. Biomech. 30(9) (1997) 865). Conceptually, tests involved comparisons of force enhancement and passive force increase for a variety of stretch tests in soleus. Furthermore, in one test, activation of the soleus was interrupted for 1s in the force-enhanced state, and soleus was then re-activated. We found that total force enhancement and passive force increase were positively correlated for all test conditions, that passive force increase following stretch of the active soleus only occurred at muscle lengths corresponding to the descending limb of the force-length relationship, that increases in passive force for a given stretch magnitude became greater at long muscle lengths, and that upon reactivation, there was a remnant passive force enhancement. We conclude from these results that the passive force enhancement following stretch of an active muscle contributes to the total force enhancement, that this passive contribution increases with increasing muscle length, and that there must be at least one other factor than passive force increase that contributes to the total force enhancement, as the passive force increase was always smaller than the total force enhancement. A by-product of this investigation was that we observed a shift in the passive force-length relationship that was dependent on muscle activation, stretch magnitude and muscle length. Therefore, the passive force-length relationship is not a constant property of skeletal muscle, but depends critically on the muscle's contractile history.  相似文献   

7.
The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.  相似文献   

8.
R S Chadwick 《Biorheology》1991,28(3-4):171-176
The force-velocity relation for cardiac muscle fibers can be calculated from a proposed constitutive law based on force-time and force-length data. The calculated force-velocity relation agrees quite well with the measured force-velocity relation obtained from a quick release of sarcomere controlled rat cardiac trabeculae. The theory confirms the measured linear relationship between maximal velocity of sarcomere shortening and sarcomere length. The implication is that the force-velocity relation is not an independent property, and therefore need not be explicitly included as a rheological element in the constitutive law.  相似文献   

9.
Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.  相似文献   

10.
We carried out a detailed mathematical analysis of the effects of length fluctuations on the dynamically evolving cross-bridge distributions, simulating those that occur in airway smooth muscle during breathing. We used the latch regulation scheme of Hai and Murphy (Am. J. Physiol. Cell Physiol. 255:C86-C94, 1988) integrated with Huxley's sliding filament theory of muscle contraction. This analysis showed that imposed length fluctuations decrease the mean number of attached bridges, depress muscle force and stiffness, and increase force-length hysteresis. At frequencies >0.1 Hz, the bond-length distribution of slowly cycling latch bridges changed little over the stretch cycle and contributed almost elastically to muscle force, but the rapidly cycling cross-bridge distribution changed substantially and dominated the hysteresis. By contrast, at frequencies <0.033 Hz this behavior was reversed: the rapid cycling cross-bridge distribution changed little, effectively functioning as a constant force generator, while the latch bridge bond distribution changed substantially and dominated the stiffness and hysteresis. The analysis showed the dissociation of force/length hysteresis and cross-bridge cycling rates when strain amplitude exceeds 3%; that is, there is only a weak coupling between net external mechanical work and the ATP consumption required for cycling cross-bridges during the oscillatory steady state. Although these results are specific to airway smooth muscle, the approach generalizes to other smooth muscles subjected to cyclic length fluctuations.  相似文献   

11.
In typical muscle models, it is often assumed that the contractile element (fascicle) length depends exclusively on the instantaneous muscle-tendon length and the instantaneous muscle force. In order to test whether the instantaneous fascicle length during dynamic contractions can be predicted from muscle-tendon length and force, fascicle lengths, muscle-tendon lengths, and muscle forces were directly measured in cat medial gastrocnemii during isometric and dynamic contractions. Two theoretical muscle models were developed: model A was based on force-time data obtained during the activation phase and model D on force-time data obtained during the deactivation phase of isometric contractions. To test the models, instantaneous fascicle lengths were predicted from muscle-tendon lengths and forces during dynamic contractions that simulated cat locomotion for speeds ranging from 0.4 to 1.6m/s. The theoretically predicted fascicle lengths were compared with the experimentally measured fascicle lengths. It was found that fascicle lengths were not uniquely associated with muscle-tendon lengths and forces; that is, for a given muscle-tendon length and force, fascicle lengths varied depending on the contractile history. Consequently, models A and D differed in fascicle length predictions; model D (maximum average error=8.5%) was considerably better than model A (maximum average error=22.3%). We conclude from this study that it is not possible to predict the exact fascicle lengths from muscle-tendon lengths and forces alone, however, adequate predictions seem possible based on such a model. The relationship between fascicle length and muscle force and muscle-tendon length is complex and highly non-linear, thus, it appears unlikely that accurate fascicle length predictions can be made without some reference contractions in which fascicle length, muscle-tendon length, and force are measured simultaneously.  相似文献   

12.
Recent work indicates that free radicals mediate sepsis-induced diaphragmatic dysfunction. These previous experiments have not, however, established the source of the responsible free radical species. In theory, this phenomenon could be explained if one postulates that sepsis elicits an upregulation of contraction-related free radical formation in muscle. The purpose of the present study was to test this hypothesis by examination of the effect of sepsis on contraction-related free radical generation [i.e. , formation of reactive oxygen species (ROS)] by the diaphragm. Rats were killed 18 h after injection with either saline or endotoxin. In vitro hemidiaphragms were then prepared, and ROS generation during electrically induced contractions (20-Hz trains delivered for 10 min) was assessed by measurement of the conversion of hydroethidine to ethidium. ROS generation was negligible in noncontracting diaphragms from both saline- and endotoxin-treated groups (2.0 +/- 0. 6 and 2.8 +/- 1.0 ng ethidium/mg tissue, respectively), but it was marked in contracting diaphragms from saline-treated animals (19.0 +/- 2.8 ng/mg tissue) and even more pronounced (30.0 +/- 2.8 ng/mg tissue) in diaphragms from septic animals (P < 0.01). This enhanced free radical generation occurred despite the fact that the force-time integral (i.e., the area under the curve of force vs. time) for control diaphragms was higher than that for the septic group. In additional studies, in which we altered the stimulation paradigm in control muscles to achieve a force-time integral similar to that achieved in septic muscles, an even greater difference between control and septic muscle ROS formation was observed. These data indicate that ROS formation during contraction is markedly enhanced in diaphragms from endotoxin-treated septic animals. We speculate that ROS generated in this fashion plays a central role in producing sepsis-related skeletal muscle dysfunction.  相似文献   

13.
The influence of the contractile tension rise time on isokinetic force-angle records has been inferred from static force-time curves but has not been experimentally determined. The purpose of this study is thus to describe the influence of the contractile rise time on the force-angle curves produced during maximal voluntary, acceleration controlled, isokinetic plantarflexions at 30 degrees/s. Since we could not measure directly the period of force development unbiased by changes in muscle length during the movements, we devised an experimental strategy which allowed the computation of the dynamic force-time curve. Thus in five normal men, we first recorded force-angle curves produced during maximal voluntary plantarflexion movements preceded by maximal static pre-loading (D:-10 degrees Max) in order to eliminate the period of tension development from the force-angle record. Next, we recorded force-angle curves produced during maximal voluntary contractions initiated from two different starting angles without pre-loading (D:-10 degrees Min and D:0 degrees Min) to include the period of tension rise. The dynamic force-time curve was computed by correcting these force-angle curves (D:-10 degrees Min and D:0 degrees Min) for the hypothetical loss in force due to muscle shortening. We compared the relative (to remove the effects of force magnitude) computed dynamic force-time curves with relative static force-time curves measured at three different angles. We found the shape and several other parameters of all three static and both computed dynamic force-time curves to be similar (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
When strips of activated airway smooth muscle are stretched cyclically, they exhibit force-length loops that vary substantially in both position and shape with the amplitude and frequency of the stretch. This behavior has recently been ascribed to a dynamic interaction between the imposed stretch and the number of actin-myosin interactions in the muscle. However, it is well known that the passive rheological properties of smooth muscle have a major influence on its mechanical properties. We therefore hypothesized that these rheological properties play a significant role in the force-length dynamics of activated smooth muscle. To test the plausibility of this hypothesis, we developed a model of the smooth muscle strip consisting of a force generator in series with an elastic component. Realistic steady-state force-length loops are predicted by the model when the force generator obeys a hyperbolic force-velocity relationship, the series elastic component is highly nonlinear, and both elastic stiffness and force generation are adjusted so that peak loop force equals isometric force. We conclude that the dynamic behavior of airway smooth muscle can be ascribed in large part to an interaction between connective tissue rheology and the force-velocity behavior of contractile proteins.  相似文献   

15.
Relative force depression associated with muscle fatigue is reported to be greater when assessed at short vs. long muscle lengths. This appears to be due to a rightward shift in the force-length relationship. This rightward shift may be caused by stretch of in-series structures, making sarcomere lengths shorter at any given muscle length. Submaximal force-length relationships (twitch, double pulse, 50 Hz) were evaluated before and after repetitive contractions (50 Hz, 300 ms, 1/s) in an in situ preparation of the rat medial gastrocnemius muscle. In some experiments, fascicle lengths were measured with sonomicrometry. Before repetitive stimulation, fascicle lengths were 11.3 +/- 0.8, 12.8 +/- 0.9, and 14.4 +/- 1.2 mm at lengths corresponding to -3.6, 0, and 3.6 mm where 0 is a reference length that corresponds with maximal active force for double-pulse stimulation. After repetitive stimulation, there was no change in fascicle lengths; these lengths were 11.4 +/- 0.8, 12.6 +/- 0.9, and 14.2 +/- 1.2 mm. The length dependence of fatigue was, therefore, not due to a stretch of in-series structures. Interestingly, the rightward shift that was evident when active force was calculated in the traditional way (subtraction of the passive force measured before contraction) was not seen when active force was calculated by subtracting the passive force that was associated with the fascicle length reached at the peak of the contraction. This calculation is based on the assumption that passive force decreases as the fascicles shorten during a fixed-end contraction. This alternative calculation revealed similar postfatigue absolute active force depression at all lengths. In relative terms, a length dependence of fatigue was still evident, but this was greatly diminished compared with that observed when active force was calculated with the traditional method.  相似文献   

16.
The "slow component" of O2 uptake (VO2) kinetics during constant-load heavy-intensity exercise is traditionally thought to derive from a progressive recruitment of muscle fibers. In this study, which represents a reanalysis of data taken from a previous study by our group (Grassi B, Hogan MC, Greenhaff PL, Hamann JJ, Kelley KM, Aschenbach WG, Constantin-Teodosiu D, Gladden LB. J Physiol 538: 195-207, 2002) we evaluated the presence of a slow component-like response in the isolated dog gastrocnemius in situ (n=6) during 4 min of contractions at approximately 60-70% of peak VO2. In this preparation all muscle fibers are maximally activated by electrical stimulation from the beginning of the contraction period, and no progressive recruitment of fibers is possible. Muscle VO2 was calculated as blood flow multiplied by arteriovenous O2 content difference. The muscle fatigued (force decreased by approximately 20-25%) during contractions. Kinetics of adjustment were evaluated for 1) VO2, uncorrected for force development; 2) VO2 normalized for peak force; 3) VO2 normalized for force-time integral. A slow component-like response, described in only one muscle out of six when uncorrected VO2 was considered, was observed in all muscles when VO2/peak force and VO2/force-time were considered. The amplitude of the slow component-like response, expressed as a fraction of the total response, was higher for VO2/peak force (0.18+/-0.06, means+/-SE) and for VO2/force-time (0.22+/-0.05) compared with uncorrected VO2 (0.04+/-0.04). A progressive recruitment of muscle fibers may not be necessary for the development of the slow component of VO2 kinetics, which may be caused by the metabolic factors that induce muscle fatigue and, as a consequence, reduce the efficiency of muscle contractions.  相似文献   

17.
The effect of SH-groups of cysteine on the rate of oxygen uptake by some homogenates of the rabbit tissues. Acta Physiol. Pol., 1977, 28 (6): 541-551. In the present experiments the effect of SH-groups of cysteine on the respiration rate of homogenates of kidney, liver, brain, myocardium and skeletal muscle was investigated in the rabbit. Using the Warburg's method of respirometry it was found that cysteine added to the incubation medium modifies oxygen uptake by the above-mentioned tissue homogenates and that this reaction depends both on the kind of tissue and cysteine concentration in the medium. Addition of cysteine to the incubation medium in the concentration of 0.1 mg/ml exerted only slight, insignificant influence on the tissue respiration but in the concentration of 0.4 mg/ml it increased the respiration rate in homogenates of kidney (by 30%), liver (by 55%) and skeletal muscle (by 59%). Cysteine added in the concentration of 0.8 mg/ml increased the respiration rate of all the examined tissue homogenates. The strongest effect of cysteine in this concentration was found in the liver and skeletal muscle homogenates (an increase in O2 uptake by 88% and 89% respectively) and the lowest in the myocardium (by 53%). Under control conditions (without cysteine) kidney homogenates had the highest oxygen consumption and skeletal muscle ones the lowest.  相似文献   

18.
When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtained at the corresponding final length. The cross-bridge model of muscle contraction does not readily explain this history dependence of force production. The most accepted proposal to explain both, force depression after shortening and force enhancement after stretch, is a nonuniform behavior of sarcomeres that develops during and after length changes. This hypothesis is based on the idea of instability of sarcomere lengths on the descending limb of the force-length relationship. However, recent evidence suggests that skeletal muscles may be stable over the entire range of active force production, including the descending limb of the force-length relationship. The purpose of this review was to critically evaluate hypotheses aimed at explaining the history dependence of force production and to provide some novel insight into the possible mechanisms underlying these phenomena. It is concluded that the sarcomere nonuniformity hypothesis cannot always explain the total force enhancement observed after stretch and likely does not cause all of the force depression after shortening. There is evidence that force depression after shortening is associated with a reduction in the proportion of attached cross bridges, which, in turn, might be related to a stress-induced inhibition of cross-bridge attachment in the myofilament overlap zone. Furthermore, we suggest that force enhancement is not associated with instability of sarcomeres on the descending limb of the force-length relationship and that force enhancement has an active and a passive component. Force depression after shortening and force enhancement after stretch are likely to have different origins.  相似文献   

19.
Models are useful when studying how architectural and physiological properties of muscle-tendon complexes are related to function, because they allow for the simulation of the behaviour of such complexes during natural movements. In the construction of these models, evaluation of their accuracy is an important step. In the present study, a model was constructed to calculate the isometric force-length relationship of the rat extensor digitorum longus muscle-tendon complex. The model is based on the assumption that a muscle-tendon complex is a collection of independent units, each consisting of a muscle fibre in series with a tendon fibre. By intention, values for model parameters were derived indirectly, using only the measured maximal isometric tetanic force, the distance between origin and insertion at which it occurred (optimum lOI) and an estimate of muscle fibre optimal length. The accuracy of the calculated force-length relationship was subsequently evaluated by comparing it to the relationship measured in isometric tetanic contractions of a real complex in the rat. When the length of distal muscle fibres, measured during isometric contraction at optimal lOI of the whole complex, was used as an estimate for muscle fibre optimal length of all muscle fibre-tendon fibre units in the model, the calculated relationship was too narrow. That is, both on the ascending limb and on the descending limb the calculated tetanic force was lower than the measured tetanic force.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Heat, mechanics, and myosin ATPase in normal and hypertrophied heart muscle   总被引:2,自引:0,他引:2  
In this paper we review our previous work on the myothermic economy of isometric force production in compensated cardiac hypertrophy secondary to pulmonary artery constriction (pressure overload) and/or thyrotoxicosis (volume overload). Hypertrophy-induced changes in isotonic and isometric twitch mechanics are correlated with accompanying changes in actin-activated myosin ATPase and heat liberation. Heat measurements were made with rapid, high-sensitivity thermopiles on right ventricular papillary muscles from normal and hypertrophied rabbit hearts. Total activity-related heat was separated into initial and recovery heat. Initial heat was separated into a tension-dependent component (TDH) relating to cross-bridge activity, and a tension-independent component (TIH) relating to excitation-contraction coupling. There were oppositely directed changes in most parameters studied in pressure overload hypertrophy (P) as compared with thyrotoxic hypertrophy (T). Thus, in P there was depression (30-50% in the rate of isometric force production, mechanical Vmax, TDH and TDH rate, myosin ATPase, TIH, and prolongation in time-to-peak twitch tension, whereas in T all parameters were oppositely changed except for no change in TIH. Thyrotoxicosis following pressure overload reversed the P-induced changes in all parameters. There was a direct, linear relation between in vitro actin-activated myosin ATPase and in vivo TDH. However, TDH per unit twitch tension or tension-time integral varied inversely with ATPase, making force production more economical than normal in P muscles and less economical than normal in T muscles. These cellular changes beneficially equip P hearts for slow, high-pressure, economical pumping the T hearts for fast, high-volume, uneconomical pumping. The differences are similar to those between slow and fast skeletal muscle and between neonatal and adult skeletal muscle. The mechanism of these changes is discussed in terms of an enzyme kinetic scheme of chemomechanical coupling in actomyosin interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号