首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a technique, sequence-tagged microsatellite profiling (STMP), to rapidly generate large numbers of simple sequence repeat (SSR) markers from genomic or cDNA. This technique eliminates the need for library screening to identify SSR-containing clones and provides an ~25-fold increase in sequencing throughput compared to traditional methods. STMP generates short but characteristic nucleotide sequence tags for fragments that are present within a pool of SSR amplicons. These tags are then ligated together to form concatemers for cloning and sequencing. The analysis of thousands of tags gives rise to a representational profile of the abundance and frequency of SSRs within the DNA pool, from which low copy sequences can be identified. As each tag contains sufficient nucleotide sequence for primer design, their conversion into PCR primers allows the amplification of corresponding full-length fragments from the pool of SSR amplicons. These fragments permit the full characterisation of a SSR locus and provide flanking sequence for the development of a microsatellite marker. Alternatively, sequence tag primers can be used to directly amplify corresponding SSR loci from genomic DNA, thereby reducing the cost of developing a microsatellite marker to the synthesis of just one sequence-specific primer. We demonstrate the utility of STMP by the development of SSR markers in bread wheat.  相似文献   

2.
We describe a technique, sequence-tagged microsatellite profiling (STMP), to rapidly generate large numbers of simple sequence repeat (SSR) markers from genomic or cDNA. This technique eliminates the need for library screening to identify SSR-containing clones and provides an approximately 25-fold increase in sequencing throughput compared to traditional methods. STMP generates short but characteristic nucleotide sequence tags for fragments that are present within a pool of SSR amplicons. These tags are then ligated together to form concatemers for cloning and sequencing. The analysis of thousands of tags gives rise to a representational profile of the abundance and frequency of SSRs within the DNA pool, from which low copy sequences can be identified. As each tag contains sufficient nucleotide sequence for primer design, their conversion into PCR primers allows the amplification of corresponding full-length fragments from the pool of SSR amplicons. These fragments permit the full characterisation of a SSR locus and provide flanking sequence for the development of a microsatellite marker. Alternatively, sequence tag primers can be used to directly amplify corresponding SSR loci from genomic DNA, thereby reducing the cost of developing a microsatellite marker to the synthesis of just one sequence-specific primer. We demonstrate the utility of STMP by the development of SSR markers in bread wheat.  相似文献   

3.
Expressed sequence tags (ESTs) from Coffea canephora leaves and fruits were used to search for types and frequencies of simple sequence repeats (EST–SSRs) with a motif length of 1–6 bp. From a non-redundant (NR) EST set of 5,534 potential unigenes, 6.8% SSR-containing sequences were identified, with an average density of one SSR every 7.73 kb of EST sequences. Trinucleotide repeats were found to be the most abundant (34.34%), followed by di- (25.75%) and hexa-nucleotide (22.04%) motifs. The development of unique genic SSR markers was optimized by a computational approach which allowed us to eliminate redundancy in the original EST set and also to test the specificity of each pair of designed primers. Twenty-five EST–SSRs were developed and used to evaluate cross-species transferability in the Coffea genus. The orthology was supported by the amplicon sequence similarity and the amplification patterns. The >94% identity of flanking sequences revealed high sequence conservation across the Coffea genus. A high level of polymorphic loci was obtained regardless of the species considered (from 75% for C. liberica to 86% for C. canephora). Moreover, the polymorphism revealed by EST–SSR was similar to that exposed by genomic SSR. It is concluded that Coffea ESTs are a valuable resource for microsatellite mining. EST-SSR markers developed from C. canephora sequences can be easily transferred to other Coffea species for which very little molecular information is available. They constitute a set of conserved orthologous markers, which would be ideal for assessing genetic diversity in coffee trees as well as for cross-referencing transcribed sequences in comparative genomics studies.  相似文献   

4.
In order to enhance the resolution of an existing genetic map of rice, and to obtain a comprehensive picture of marker utility and genomic distribution of microsatellites in this important grain species, rice DNA sequences containing simple sequence repeats (SSRs) were extracted from several small-insert genomic libraries and from the database. One hundred and eighty eight new microsatellite markers were developed and evaluated for allelic diversity. The new simple sequence length polymorphisms (SSLPs) were incorporated into the existing map previously containing 124 SSR loci. The 312 microsatellite markers reported here provide whole-genome coverage with an average density of one SSLP per 6 cM. In this study, 26 SSLP markers were identified in published sequences of known genes, 65 were developed based on partial cDNA sequences available in GenBank, and 97 were isolated from genomic libraries. Microsatellite markers with different SSR motifs are relatively uniformly distributed along rice chromosomes regardless of whether they were derived from genomic clones or cDNA sequences. However, the distribution of polymorphism detected by these markers varies between different regions of the genome. Received: 5 May 1999 / Accepted: 16 August 1999  相似文献   

5.
ISSR分子标记及其在植物遗传学研究中的应用   总被引:186,自引:2,他引:184  
王建波 《遗传》2002,24(5):613-616
ISSR分子标记是在SSR标记基础上发展起来的一种新技术,其基本原理是在SSR的5′或3′端加锚1~4个嘌呤或嘧啶碱基,然后以此为引物,对两侧具有反向排列SSR的一段基因组DNA序列进行扩增。重复序列和锚定碱基是随机选择的,扩增产物经聚丙烯酰胺或琼脂糖凝胶电泳分离后,每个引物可以产生比RAPD方法更多的扩增片段,因此,ISSR标记是一种快速、可靠、可以提供有关基因组丰富信息的DNA指纹技术。ISSR标记呈孟德尔式遗传,在多数物种中是显性的,目前已广泛用于植物品种鉴定、遗传作图、基因定位、遗传多样性、进化及分子生态学研究中。 ISSR Markers and Their Applications in Plant Genetics WANG Jian-bo Key Laboratory of MOE for Plant Developmental Biology,Wuhan University,Wuhan 430072,China Abstract:Recently,inter-simple sequence repeat (ISSR) markers have emerged as an alternative system with reliability and advantages of microsatellites (SSR).The technique involves amplification of genomic segments flanked by inversely oriented and closely spaced microsatellite sequences by a single primer or a pair of primers based on SSRs anchored 5′ or 3′ with 1-4 purine or pyramidine residues.The sequences of repeats and anchor nucleates are arbitrarily selected.Coupled with the separation of amplification products on a polyacrylamide or agarose gels,ISSR amplification can reveal a much larger number of fragments per primer than RAPD.It is concluded that ISSR technique provides a quick,reliable and highly informative system for DNA fingerprinting.ISSR markers are inherited in Mendelin mode and segregated as dominant markers.This technique has been widely used in the studies of cultivar identification,genetic mapping,gene tagging,genetic diversity,evolution and molecular ecology. Key words:molecular markers; ISSR; plant;applications  相似文献   

6.
Oil camellia trees are important woody plants for the production of high-quality cooking oil. On the contrary to their economic importance, their genetic and genomic resources are very limited, which greatly hamper the genetic studies on oil camellia trees. Microsatellites or simple sequence repeats (SSRs) have great value in many aspects of genetic analyses due to their high polymorphism and codominant inheritance. In this study, we report the large-scale development and characterization of SSR markers derived from genomic sequences of Camellia chekiangoleosa by high-throughput pyrosequencing technology. A total of 1,091,393 genomic shotgun reads were generated using Roche 454 FLX sequencer, the average read length was 319 bp, and the total sequence throughput was 347.9 Mb. These sequences were assembled into 35,315 contigs with total length of 14.8 Mb and the N50 contig size of 770 bp. By analyzing with microsatellite (MISA), a total of 5,844 perfect microsatellites were detected from the assembled sequences. Among them, tetranucleotide repeats were found to be the most frequent microsatellites in the genome of C. chekiangoleosa, and all the dominant repeat motifs for different types of SSRs were detected to be rich in A/T. Experimental analysis with 900 SSR primer pairs revealed that 66 % of them succeeded in PCR amplification. Further investigation with 345 SSR primer pairs showed that a relatively high percentage of primers amplified polymorphic loci (31.9 %). Experimental data also revealed that, overall, long microsatellite repeats (>20 bp) were more variable than the short ones (<20 bp) in the genome of oil camellia tree.  相似文献   

7.
近年来花生微卫星标记的开发取得了一定的进展, 初步揭示了花生在DNA水平上的遗传多样性。花生微卫星标记的开发途径主要包括通过构建小片段基因组文库开发基因组SSR标记, 根据花生EST序列开发EST-SSR标记, 根据豆科植物序 列信息和SSR标记开发花生SSR标记, 将SSR标记与其它分子标记结合开发新的DNA标记, 以及基于SSR核心序列开发ISSR标记。花生微卫星标记主要应用于遗传多样性研究、遗传图谱与品种指纹图谱构建以及分子标记辅助育种等领域。本文综述了花生SSR标记开发研究的进展及应用。  相似文献   

8.
花生微卫星标记的研究进展   总被引:3,自引:0,他引:3  
近年来花生微卫星标记的开发取得了一定的进展,初步揭示了花生在DNA水平上的遗传多样性。花生微卫星标记的开发途径主要包括通过构建小片段基因组文库开发基因组SSR标记,根据花生EST序列开发EST-SSR标记,根据豆科植物序列信息和SSR标记开发花生SSR标记,将SSR标记与其它分子标记结合开发新的DNA标记,以及基于SSR核心序列开发ISSR标记。花生微卫星标记主要应用于遗传多样性研究、遗传图谱与品种指纹图谱构建以及分子标记辅助育种等领域。本文综述了花生SSR标记开发研究的进展及应用。  相似文献   

9.
Microsatellites (SSR--simple sequence repeats, STR--short tandem repeats, SSLP--simple sequence length polymorphism, VNTR--variable number of tandem repeats) are the class of repetitive DNA sequences present in all living organisms. Particular characteristics of microsatellites, such as their presence in the genomes of all living organisms, high level of allelic variation, co-dominant mode of inheritance and potential for automated analysis make them an excellent tool for a number of approaches like genotyping, mapping and positional cloning of genes. The three most popular types of markers containing microsatellite sequences that are presently used are: (1) SSR (simple sequence repeats), generated by amplifying in a PCR reaction with the use of primers complementary to flanking regions; (2) ISSR (inter-simple sequence repeats), based on the amplification of regions between inversely oriented closely spaced microsatellites; and (3) SAMPL (selective amplification of microsatellite polymorphic loci), which utilises AFLP (amplified fragment-length polymorphism) methodology, with one exception--for the second amplification, one of the starters is complementary to the microsatellite sequence. The usefulness of the three above-mentioned markers for numerous purposes has been well documented for plants.  相似文献   

10.
11.
We describe a rapid, reliable method for the sexing of the domestic sheep (Ovis aries) by amplification of Y-chromosome-specific sequences in male genomic DNA using the polymerase-chain reaction (PCR). Oligonucleotide primers were selected from a conserved sequence, the HMG box, in the sequence of ovine Sry, permitting amplification of a defined 161 bp fragment only from male-specific genomic DNA. As a control, microsatellite primers also were used in PCR reactions, recognising a sequence that is amplifiable in genomic DNA from both males and females. In addition, we demonstrate the feasibility of using this technique for the detection of Y-specific sequences in foetal biopsies (specifically small numbers of foetal germ cells), and in reconstruction mixtures of male and female genomic DNA to simulate the analysis of intersex chimaeras which would be produced when pluripotent cells have been established for this species.  相似文献   

12.
Microsatellite markers containing simple sequence repeats (SSR) are a valuable tool for genetic analysis. Our objective is to augment the existing RFLP map of rice with simple sequence length polymorphisms (SSLP). In this study, we describe 20 new microsatellite markers that have been assigned to positions along the rice chromosomes, characterized for their allelic diversity in cultivated and wild rice, and tested for amplification in distantly related species. Our results indicate that the genomic distribution of microsatellites in rice appears to be random, with no obvious bias for, or clustering in particular regions, that mapping results are identical in intersubspecific and interspecific populations, and that amplification in wild relatives ofOryza sativa is reliable in species most closely related to cultivated rice but becomes less successful as the genetic distance increases. Sequence analysis of SSLP alleles in three relatedindica varieties demonstrated the clustering of complex arrays of SSR motifs in a single 300-bp region with independent variation in each. Two microsatellite markers amplified multiple loci that were mapped onto independent rice chromosomes, suggesting the presence of duplicated regions within the rice genome. The availability of increasing numbers of mapped SSLP markers can be expected to increase the power and resolution of genome analysis in rice.  相似文献   

13.
Microsatellite markers containing simple sequence repeats (SSR) are a valuable tool for genetic analysis. Our objective is to augment the existing RFLP map of rice with simple sequence length polymorphisms (SSLP). In this study, we describe 20 new microsatellite markers that have been assigned to positions along the rice chromosomes, characterized for their allelic diversity in cultivated and wild rice, and tested for amplification in distantly related species. Our results indicate that the genomic distribution of microsatellites in rice appears to be random, with no obvious bias for, or clustering in particular regions, that mapping results are identical in intersubspecific and interspecific populations, and that amplification in wild relatives ofOryza sativa is reliable in species most closely related to cultivated rice but becomes less successful as the genetic distance increases. Sequence analysis of SSLP alleles in three relatedindica varieties demonstrated the clustering of complex arrays of SSR motifs in a single 300-bp region with independent variation in each. Two microsatellite markers amplified multiple loci that were mapped onto independent rice chromosomes, suggesting the presence of duplicated regions within the rice genome. The availability of increasing numbers of mapped SSLP markers can be expected to increase the power and resolution of genome analysis in rice.  相似文献   

14.
The traditional development of simple sequence repeat (SSR) or microsatellite markers by probe hybridization can be time-consuming and requires the use of specialized laboratory equipment. In this study, probe hybridization was circumvented by using sequence information on 3,500 genomic clones mainly from Brassica oleracea to identify di, tri, tetra and penta-nucleotide repeats. A total of 587 primer pairs flanking SSR were developed using this approach. From these, 420 SSR markers amplified DNA in two parental lines of B. rapa (26% were polymorphic) and 523 in two parental lines of B. oleracea (32% were polymorphic). A diverse array of motif types was identified, characterized and compared with traditional SSR detection methods. The most abundant motifs found were di- (38%) and trinucleotides (33%) followed by penta- (16%) and tetranucleotide (13%) motifs. The type of motif class, motif length and repeat were not indicative of polymorphisms. The frequency of B. oleracea SSRs in genomic shotgun sequence was estimated to be 1 every 4 Kb. In general, the average motif length and repeat numbers were shorter than those obtained previously by probe hybridization, and they contained a more balanced representation of SSR motif types in the genome by identifying those that do not hybridize well to DNA probes. Brassica genomic DNA sequence information is a promising resource for developing a large number of SSR molecular markers in Brassica species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A novel set of informative microsatellite markers for pepper (Capsicum annuum L.) is provided. Screening of approximately 168 000 genomic clones and 23 174 public database entries resulted in a total of 411 microsatellite-containing sequences that could be used for primer design and functional testing. A set of 154 microsatellite markers originated from short-insert genomic libraries and 257 markers originated from database sequences. Of those markers, 147 (61 from genomic libraries and 86 from database sequences) showed specific and scoreable amplification products and detected polymorphisms between at least 2 of the 33 lines of a test panel consisting of cultivated and wild Capsicum genotypes. These informative markers were subsequently surveyed for allelic variation and information content. The usefulness of the new markers for diversity and taxonomic studies was demonstrated by the construction of consistent phylogenetic trees based on the microsatellite polymorphisms. Conservation of a subset of microsatellite loci in pepper, tomato, and potato was proven by cross-species amplification and sequence comparisons. For several informative pepper microsatellite markers, homologous expressed sequence tag (EST) counterparts could be identified in these related species that also carry microsatellite motifs. Such orthologs can potentially be used as reference markers and common anchoring points on the genetic maps of different solanaceous species.  相似文献   

16.
目的:利用磁珠富集法分离北柴胡微卫星序列,以开发北柴胡微卫星引物,获得有多态性的简单序列重复(SSR)标记。方法:用生物素标记的混合探针(AC)15、(AG)15、(MAB)12和两端连接已知序列人工接头的北柴胡基因组DNA酶切片段混和后与磁珠杂交,构建微卫星序列富集的小片段插入文库;利用接头引物分别与生物素探针引物Biotin-(AC)15、Biotin-(AG)15、Biontin-(MAB)12形成3个组合,用PCR方法对文库进行初步筛选;对可能的阳性克隆子进行测序复筛,选取微卫星侧翼序列足够长的序列设计引物,用荧光标记的基因分型技术以栽培柴胡种质为材料分析其多态性。结果:开发了5对多态性SSR标记,它们在5份柴胡栽培种质中共扩增出30.70个多态性等位基因,平均每条引物可以扩增出6.14个多态性等位基因;观察等位基因数最多13个,最少3个;有效等位基因数最多11.4个,最少1.6个。同时分析了4对EST-SSR引物,比较了2种SSR标记扩增结果。结论:磁珠富集法是开发柴胡多态性SSR标记的有效方法。  相似文献   

17.
18.
A study was undertaken to determine the utility in bread wheat of anchored PCR for the development of single locus SSR markers targeted at compound repeat motifs. In anchored PCR, microsatellite amplification is achieved using a single primer complementary to the flanking sequence, and one which anchors to the repeat junction of the compound SSR. The recovery rate of useable markers was found to be similar (43%) to that reported for conventionally generated SSRs. Thus, anchored PCR can be used to reduce the costs of marker development, since it requires that only half the number of primers be synthesised. Where fluorescence-based platforms are used, marker deployment costs are lower, since only the anchoring primers need to be labelled. In addition, anchored PCR improves the recovery of useful markers, as it allows assays to be generated from microsatellite clones with repeat sequences located close to their ends, a situation where conventional PCR amplification fails as two flanking primers cannot be designed. Strategies to permit the large-scale development of compound SSR markers amplified by anchored PCR are discussed.Communicated by P. Langridge  相似文献   

19.
By applying second‐generation sequencing technologies to microsatellite genotyping, sequence information is produced which can result in high‐resolution population genetics analysis populations and increased replicability between runs and laboratories. In the present study, we establish an approach to study the genetic structure patterns of two European hedgehog species Erinaceaus europaeus and E. roumanicus. These species are usually associated with human settlements and are good models to study anthropogenic impacts on the genetic diversity of wild populations. The short sequence repeats genotyping by sequence (SSR‐GBS) method presented uses amplicon sequences to determine genotypes for which allelic variants can be defined according to both length and single nucleotide polymorphisms (SNPs). To evaluate whether complete sequence information improved genetic structure definition, we compared this information with datasets based solely on length information. We identified a total of 42 markers which were successfully amplified in both species. Overall, genotyping based on complete sequence information resulted in a higher number of alleles, as well as greater genetic diversity and differentiation between species. Additionally, the structure patterns were slightly clearer with a division between both species and some potential hybrids. There was some degree of genetic structure within species, although only in E. roumanicus was this related to geographical distance. The statistically significant results obtained by SSR‐GBS demonstrate that it is superior to electrophoresis‐based methods for SSR genotyping. Moreover, the greater reproducibility and throughput with lower effort which can be obtained with SSR‐GBS and the possibility to include degraded DNA into the analysis, allow for continued relevance of SSR markers during the genomic era.  相似文献   

20.
Sugarcane has become an increasingly important first-generation biofuel crop in tropical and subtropical regions. It has a large, complex, polyploid genome that has hindered the progress of genomic research and marker-assisted selection. Genetic mapping and ultimately genome sequence assembly require a large number of DNA markers. Simple sequence repeats (SSRs) are widely used in genetic mapping because of their abundance, high rates of polymorphism, and ease of use. The objectives of this study were to develop SSR markers for construction of a saturated genetic map and to characterize the frequency and distribution of SSRs in a polyploid genome. SSR markers were mined from expressed sequence tag (EST), reduced representation library genomic sequences, and bacterial artificial chromosome (BAC) sequences. A total of 5,675 SSR markers were surveyed in a segregating population. The overall successful amplification and polymorphic rates were 87.9 and 16.4%, respectively. The trinucleotide repeat motifs were most abundant, with tri- and hexanucleotide motifs being the most abundant for the ESTs. BAC and genomic SSRs were mostly AT-rich while the ESTs were relatively GC-rich due to codon bias. These markers were also aligned to the sorghum genome, resulting in 1,203 markers mapped in the sorghum genome. This set of SSRs conserved in sugarcane and sorghum would be the most informative for mapping quantitative trait loci in sugarcane and for comparative genomic analyses. This large collection of SSR markers is a valuable resource for sugarcane genomic research and crop improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号