首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Synuclein (AS) is a main component of Lewy bodies in midbrain dopamine neurons pathologically characteristic of Parkinson's disease. We show that heat shock protein (Hsp) 70 inhibits AS fibril formation via preventing the formation of prefibrillar AS (PreAS), binding with PreAS to impede nuclei formation, and binding with nuclei to retard fibril elongation. Also, Hsp70 suppresses the PreAS-induced permeabilization of vesicular membrane through interactions with PreAS. The substrate-binding domain alone is sufficient for Hsp70 to inhibit AS fibril formation. The binding of Hsp70 with PreAS only requires the substrate-binding subdomain, and the binding with AS nuclei requires the C-terminal lid subdomain as well. The results may form the molecular basis for elucidating the mechanism of AS fibril formation and the crucial roles of chaperones in protecting proteins from toxic conversion in many conformational diseases.  相似文献   

2.
The Golgi apparatus is a highly dynamic organelle which frequently undergoes morphological changes in certain normal physiological processes or in response to stress. The mechanisms are largely not known. We have found that heat shock of Panc1 cells expressing core 2 N-acetylglucosaminyltransferase-M (Panc1-C2GnT-M) induces Golgi disorganization by increasing non-muscle myosin IIA (NMIIA)–C2GnT-M complexes and polyubiquitination and proteasomal degradation of C2GnT-M. These effects are prevented by inhibition or knockdown of NMIIA. Also, the speed of Golgi fragmentation induced by heat shock is found to be positively correlated with the levels of C2GnT-M in the Golgi. The results are reproduced in LNCaP cells expressing high levels of two endogenous glycosyltransferases—core 2 N-acetylglucosaminyltransferase-L:1 and β-galactoside:α2-3 sialyltransferase 1. Further, during recovery after heat shock, Golgi reassembly as monitored by a Golgi matrix protein giantin precedes the return of C2GnT-M to the Golgi. The results are consistent with the roles of giantin as a building block of the Golgi architecture and a docking site for transport vesicles carrying glycosyltransferases. In addition, inhibition/depletion of HSP70 or HSP90 in Panc1-C2GnT-M cells also causes an increase of NMIIA–C2GnT-M complexes and NMIIA-mediated Golgi fragmentation but results in accumulation or degradation of C2GnT-M, respectively. These results can be explained by the known functions of these two HSP: participation of HSP90 in protein folding and HSP70 in protein folding and degradation. We conclude that NMIIA is the master regulator of Golgi fragmentation induced by heat shock or inhibition/depletion of HSP70/90.  相似文献   

3.
Here, we aimed to study serum heat shock protein (HSP) 70 levels in diabetic patients with and without albuminuria. We performed a 1:1 matched case control study on 40 diabetic patients with albuminuria as cases and 40 age, sex, body mass index matched diabetic patients without albuminuria (normoalbuminuria) as controls. Normoalbuminuria was defined as urinary albumin excretion rate <15 mg/12 h, and albuminuria was defined as urinary albumin excretion rate between 100–400 mg/12 h. Patients with albuminuria had a higher HSP70 than controls (0.83 ± 0.50 vs. 0.63 ± 0.06; p = 0.02), while they did not differ in any other studied variables. In ten of the studied pairs, the controls had higher HSP70 levels than cases (reverse relationship). Patients in the “direct relationship group” had higher HbA1c values than the patients in the “reverse relationship group” (8.9 ± 0.3 vs. 7.3 ± 0.6, p = 0.04). Cases in the reverse pairs had a lower low density lipoprotein cholesterol levels than their controls. The odds ratio of HSP70 in the prediction of albuminuria was (28.69 (3.2–250.1), p = 0.002). In conclusion, we have shown an increased HSP70 levels in diabetic patients with albuminuria.  相似文献   

4.

Aims

Dobutamine is cytoprotective when applied before a subsequent stress. However, the underlying molecular mechanism is unknown. Dobutamine also inhibits nuclear factor (NF)-κB in human T lymphocytes. Other inhibitors of NF-κB induce a so-called heat shock response. We hypothesized that dobutamine mediates protection from apoptotic cell death by the induction of a heat shock response.

Main methods

Jurkat T lymphoma cells were preincubated with dobutamine (0.1, 0.5 mM) before the induction of apoptosis (staurosporine, 2 μM). DNA-binding of heat shock factor (HSF)-1 was analyzed by electrophoretic mobility shift assay, mRNA-expression of heat shock protein (hsp)70 and hsp90 by Northern Blot, activity of caspase-3 by fluorogenic caspase activity assay and cleavage of pro-caspase-3 by Western Blot. Apoptosis was assessed by flow cytometry after annexin V-fluorescein isothiocyanate staining. Hsp70 and hsp90 were inhibited using N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolaetam and 17-allylamino-17-demethoxygeldana-mycin, respectively. All data are given as median and 25/75% percentile.

Key findings

Pre-incubation with dobutamine inhibited staurosporine-induced annexin V-fluorescence (28 [20–32] % vs. 12 [9–15] % for dobutamine 0.1 mM and 7 [5–12] % for dobutamine 0.5 mM, p < 0.001), cleavage of pro-caspase-3 as well as caspase-3-like activity (0.46 [0.40–0.48] vs. 0.32 [0.27–0.39] for Dobutamine 0.1 mM and 0.20 [0.19–0.23] for Dobutamine 0.5 mM, p < 0.01). Dobutamine induced DNA-binding of HSF-1 and mRNA-expression of hsp70 and hsp90. While inhibition of Hsp90 had no effect, inhibition of Hsp70 increased the number of annexin V-positive cells (33 [32–36] % vs. 18 [16–24] %) and caspase-3-like activity (0.21 [0.19–0.23] vs. 0.16 [0.13–0.17], p < 0.05).

Significance

Dobutamine protects from apoptotic cell death via the induction of Hsp70.  相似文献   

5.
Sumioka I  Matsura T  Kai M  Yamada K 《Life sciences》2004,74(20):2551-2561
The aim of the present study was to assess the contribution of the level of expression of heat shock protein 25 (HSP25), 60 (HSP60), 70 (HSC70) and 70i (HSP70i) in mouse livers after a lethal dose of acetaminophen (APAP) to their survival. We examined changes in survival ratio, plasma APAP level and alanine aminotransferase (ALT) activity, and hepatic reduced glutathione (GSH), HSP25, HSP60, HSC70 and HSP70i levels following treatment of mice with APAP (500 mg/kg, p.o.). The plasma APAP level increased rapidly, and reached a maximum 0.5 h after APAP treatment. Hepatic GSH decreased rapidly, and was almost completely depleted 1 h after APAP treatment. Plasma ALT activity, an index of liver injury, significantly increased from 3 h onwards after APAP treatment. The survival ratios 9 h, 24 h and 48 h after APAP treatment were 96%, 38% and 36%, respectively. We found a remarkable difference in the patterns of hepatic HSP25 and HSP70i induction in mice that survived after APAP treatment. HSP70i levels increased from 1 h onwards after APAP treatment in a time-dependent manner, and reached a maximum at 9 h. In contrast, HSP25 could be detected just 24 h after APAP treatment, and maximal accumulation was observed at 48 h. Other HSPs examined were unchanged. Notably, the survival ratio dropped by only 2% after HSP25 expression. Recently, a novel role for HSP25 as an anti-inflammatory factor was suggested. We have already shown that 48-h treatment with APAP induces severe centrilobular necrosis with inflammatory cell infiltration in mouse livers. Taken together, the level of expression of hepatic HSP25 may be a crucial determinant of the fate of mice exposed to APAP insult.  相似文献   

6.
Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN + HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN + HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes.  相似文献   

7.
MAGE-3, a member of melanoma antigen (MAGE) gene family, is recognized as an ideal candidate for tumor vaccine because it is expressed in a significant proportion of tumors of various histological types and can induce antigen-specific immune response in vivo. There is now substantial evidence that heat shock proteins (HSPs) isolated from cancer cells and virus-infected cells can be used as vaccines to produce cancer-specific or virus-specific immunity. In this research, we investigated whether M. tuberculosis HSP70 can be used as vehicle to elicit immune response to its accompanying MAGE-3 protein. A recombinant protein expression vector was constructed that permitted the production of fusion protein linking amino acids 195–314 of MAGE-3 to the C terminus of HSP70. We found that HSP70-MAGE-3 fusion protein can elicit stronger cellular and humoral immune responses against MAGE-3 expressing murine tumor than those elicited by MAGE-3 protein in vivo, which resulted in potent antitumor immunity against MAGE-3-expressing tumors. Covalent linkage of HSP70 to MAGE-3 was necessary to elicit immune response to MAGE-3. These results indicate that linkage of HSP70 to MAGE-3 enhanced immune responses to MAGE-3 in vivo and HSP70 can be exploited to enhance the cellular and humoral immune responses against any attached tumor-specific antigens.  相似文献   

8.
Due to their adjuvant effect and their ability to chaperone tumor-associated peptides, heat shock proteins constitute a potent alarm signal for the immune system and can lead to activation of anti-tumor T-cell immunity. Radiofrequency ablation has been reported to induce heat shock protein expression especially that of heat shock protein 70 in sublethally damaged tumor cells. In this study, we evaluated the release of heat shock protein 70 into the serum of cancer-bearing patients directly after radiofrequency ablation. Sera of 22 patients undergoing radiofrequency ablation for the treatment of primary and secondary malignancies of the liver, kidney, and lung, as well as control sera of 20 patients undergoing diagnostic liver biopsy were analyzed using a manufactured heat shock protein 70 ELISA. A significant increase in serum levels of heat shock protein 70 was detectable in the patient cohort 1 day after radiofrequency ablation. More than a twofold increase was observed in nine out of 22 patients, which tended to correlate with favorable clinical outcome. No patient of the control group revealed a comparable increase. Radiofrequency ablation can lead to a release of heat shock protein 70 into the serum, which is transiently detectable 1 day after treatment. Elevated heat shock protein 70 serum levels may constitute a biomarker for favorable clinical outcome.  相似文献   

9.
The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H2O2, is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H2O2 in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37°C) or by treatment with H2O2, butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H2O2 is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H2O2-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H2O2 is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H2O2 was unable to induce this complex suggesting that H2O2 is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37°C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling. Electronic Supplementary Material Supplementary material is available for this article at http//dx.doi.org/10.1007/s11103-006-0045-4 Roman A. Volkov and Irina I. Panchuk contributed equally  相似文献   

10.
Self-reactive T cells have shown to have a potential role as regulators of the immune system preventing or even suppressing autoimmunity. One of the most abundant proteins that can be eluted from human HLA molecules is heat shock protein 70 (HSP70). The aims of the current study are to identify HSP70 epitopes based on published HLA elution studies and to investigate whether T cells from healthy individuals may respond to such self-epitopes. A literature search and subsequent in silico binding prediction based on theoretical MHC binding motifs resulted in the identification of seven HSP70 epitopes. PBMCs of healthy controls proliferated after incubation with two of the seven peptides (H167 and H290). Furthermore H161, H290, and H443 induced CD69 expression or production of cytokines IFNγ or TNFα in healthy controls. The identification of these naturally presented epitopes and the response they elicit in the normal immune system make them potential candidates to study during inflammatory conditions as well as in autoimmune diseases.  相似文献   

11.
12.
Plasmodium falciparum heat shock protein (PfHsp70) has been proposed to be involved in the cytoprotection of the malaria parasite through its action as a molecular chaperone. However, the biochemical and chaperone properties of PfHsp70 have not been elucidated. The heterologous overproduction of P. falciparum proteins in Escherichia coli is problematic because of its AT-rich genome and the usage of codons that are rarely used in E. coli. In this paper, we describe the successful overproduction of (His)(6)-PfHsp70 in E. coli using the pQE30 expression vector system. Initial experiments with E. coli [pQE30/PfHsp70] resulted in the overproduction of the full-length protein and truncated derivatives. The RIG plasmid, which encodes tRNAs for rare codons, was engineered into the E. coli [pQE30/PfHsp70] strain, resulting in significant reduction of the truncated (His)(6)-PfHsp70 derivatives and improved yields of the full-length protein. (His)(6)-PfHsp70 was successfully purified using nickel-chelating Sepharose affinity chromatography and its biochemical properties were determined. The V(max), K(m), and k(cat) for the basal ATPase activity of (His)(6)-PfHsp70 were found to be 14.6 nmol/min/mg, 616.5 microM, and 1.03 min(-1), respectively. Gel filtration studies indicated that (His)(6)-PfHsp70 existed largely as a monomer in solution. This is the first study to biochemically describe PfHsp70 and establishes a foundation for future studies on its chaperone properties.  相似文献   

13.
Transfection of rat oligodendrocytes with an oligonucleotide sequence complementary to the mRNA encoding the initial ten amino acids of the rat 70-kDa heat shock cognate protein (HSC70) resulted in a rapid (within 24 h) and significant reduction in HSC70 synthesis (69% of control cells transfected with sense oligonucleotide). A further decrease to approximately 44% of controls was detected after 2 days. At that time, HSC70 protein content fell to approximately 49% of controls, and a significant reduction in the synthesis of myelin basic protein (MBP) was first detected (66% of controls). After 5 days, HSC70 synthesis returned to control levels. As HSC70 protein content recovered, so did the synthesis of MBP. Throughout the 5-day experimental period, only minor changes were detected in cell morphology, overall pattern of protein synthesis and the synthesis and content of proteolipid protein (PLP) and the pi isoenzyme of glutathione-S-transferase (pi). These data show that when HSC70 protein content is sufficiently reduced by antisense oligonucleotide, synthesis of MBP (but not PLP or pi) is correspondingly down-regulated, and provide evidence consistent with the role of HSC70 as a chaperone for MBP. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

14.
The 70-kDa family of heat shock proteins plays an important role as molecular chaperones in unstressed and stressed cells. The constitutive member of the 70 family (hsc70) is crucial for the chaperoning function of unstressed cells, whereas the inducible form (hsp70) is important for allowing cells to cope with acute stressor insult, especially those affecting the protein machinery. In fish, the role of hsc70 in the cellular stress response process is less clear primarily because of the lack of a fish-specific antibody for hsc70 detection. In this study, we purified hsc70 to homogeneity from trout liver using a three-step purification protocol with differential centrifugation, ATP-agarose affinity chromatography and electroelution. Polyclonal antibodies to trout hsc70 generated in rabbits cross-reacted strongly with both purified trout hsc70 protein and also purified recombinant bovine hsc70. Two-dimensional electrophoresis followed by Western blotting confirmed that the isoelectric point of rainbow trout hsc70 was more acidic than hsp70. Using this antibody, we detected hsc70 content in the liver, heart, gill and skeletal muscle of unstressed rainbow trout. Primary cultures of trout hepatocytes subjected to a heat shock (+15 degrees C for 1 h) or exposed to either CuSO(4) (200 microM for 24 h), CdCl(2) (10 microM for 24 h) or NaAsO(2) (50 microM for 1 h) resulted in higher hsp70 accumulation over a 24-h period. However, hsc70 content showed no change with either heat shock or heavy metal exposure suggesting that hsc70 is not modulated by sublethal acute stressors in trout hepatocytes. Taken together, we have for the first time generated polyclonal antibodies specific to rainbow trout hsc70 and this antibody will allow for the characterization of the role of hsc70 in the cellular stress response process in fish.  相似文献   

15.
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.  相似文献   

16.
热休克蛋白(heat shock protein70,HSP70)是HSP家族中重要成员,在生物细胞中含量最高,可诱导性最强,具有保护细胞免受刺激损伤,促进受损细胞修复及抗炎、抗凋亡、耐受缺血/缺氧损伤等多种生物学功能。许多研究发现在心肌组织中HSP70表达升高可减轻心肌细胞损伤程度,利于损伤心肌细胞的恢复,在预防和延缓心血管疾病中起到重要作用。因此,热休克蛋白70诱导剂在心血管疾病的防治中具有潜在的临床价值。本文主要对HSP70在心血管疾病中的保护作用进行综述。  相似文献   

17.
Leucine-rich repeat kinase 2 (LRRK2) is involved in Parkinson’s disease (PD) pathology. A previous study showed that rotenone treatment induced apoptosis, mitochondrial damage, and nucleolar disruption via up-regulated LRRK2 kinase activity, and these effects were rescued by an LRRK2 kinase inhibitor. Heat-shock protein 70 (Hsp70) is an anti-oxidative stress chaperone, and overexpression of Hsp70 enhanced tolerance to rotenone. Nucleolin (NCL) is a component of the nucleolus; overexpression of NCL reduced cellular vulnerability to rotenone. Thus, we hypothesized that rotenone-induced LRRK2 activity would promote changes in neuronal Hsp70 and NCL expressions. Moreover, LRRK2 G2019S, the most prevalent LRRK2 pathogenic mutant with increased kinase activity, could induce changes in Hsp70 and NCL expression. Rotenone treatment of differentiated SH-SY5Y (dSY5Y) cells increased LRKK2 levels and kinase activity, including phospho-S935-LRRK2, phospho-S1292-LRRK2, and the phospho-moesin/moesin ratio, in a dose-dependent manner. Neuronal toxicity and the elevation of cleaved poly (ADP-ribose) polymerase, NCL, and Hsp70 were increased by rotenone. To validate the induction of NCL and Hsp70 expression in response to rotenone, cycloheximide (CHX), a protein synthesis blocker, was administered with rotenone. Post-rotenone increased NCL and Hsp70 expression was repressed by CHX; whereas, rotenone-induced kinase activity and apoptotic toxicity remained unchanged. Transient expression of G2019S in dSY5Y increased the NCL and Hsp70 levels, while administration of a kinase inhibitor diminished these changes. Similar results were observed in rat primary neurons after rotenone treatment or G2019S transfection. Brains from G2019S-transgenic mice also showed increased NCL and Hsp70 levels. Accordingly, LRRK2 kinase inhibition might prevent oxidative stress-mediated PD progression.

Abbreviations: 6-OHDA: 6-hydroxydopamine; CHX: cycloheximide; dSY5Y: differentiated SH-SY5Y; g2019S tg: g2019S transgenic mouse; GSK/A-KI: GSK2578215A kinase inhibitor; HSP70: heat shock protein 70; LDH: lactose dehydrogenase; LRRK2: leucine rich-repeat kinase 2; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; myc-GS LRRK2: myc-tagged g2019S LRRK2; NCL: nucleolin; PARP: poly(ADP-ribose) polymerase; PD: Parkinson’s disease; PINK1: PTEN-induced putative kinase 1; pmoesin: phosphorylated moesin at t558; ROS: reactive oxygen species  相似文献   


18.
Abstract In Neurospora crassa , heat shock treatment inhibits proteolytic activity. ATP-independent proteinases were analysed after polyacrylamide gel electrophoresis using renaturing gelatine gels. Proteinases of 24, 29, and 130 kDa were shown to be inhibited by heat shock and were further characterized as to their properties. A major part of the heat shock-induced inhibition is probably due to suppression of de novo synthesis of proteinases as deduced from experiments with cycloheximide. During several hours of recovery from heat shock, the inhibition of overall protein degradation and ATP-independent proteinases is reversed. Azocasein assays as well as pulse-chase experiments further showed that ATP-dependent protein degradation is only slightly affected by heat shock. Two ATP-binding proteinases of about 60 and 160 kDa even show an increased activity after heat shock. The degradation rate of heat shock proteins is inhibited by heat shock treatment, indicating that they are degraded by ATP-independent proteinases. Western blot analysis of a ∼40-kDa degradation product of HSP70 containing its amino terminal portion revealed a reduction in the amount of this peptide after heat shock.  相似文献   

19.
20.
Heat shock (HS) treatment has been previously shown to suppress the IkappaB/nuclear factor-kappaB (NF-kappaB) cascade by denaturing, and thus inactivating IkappaB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IkappaB/NF-kappaB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-alpha-induced activation of the IkappaB/NF-kappaB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-alpha-induced activation of the IkappaB/NF-kappaB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-alpha-induced IkappaBalpha degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IkappaBalpha stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IkappaB/NF-kappaB cascade by facilitating the renaturation of IKK and blocking its further denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号