首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a procedure in which human sperm were allowed to fertilize zona-free golden hamster (Mesocricetus auratus) eggs in vitro, the sperm chromosomes of a man heterozygous for inv(3) (p11q11) were analyzed. When the chromosomes were Q-banded, the inverted chromosome had the bright centromeric band on the short arm rather than on the long arm, as was seen in the normal No. 3. One hundred and eleven sperm chromosome spreads were examined, of which 64 contained the normal chromosome and 47 the inverted one. This was not significantly different from the expected 1:1 ratio. No sperm containing a chromosome imbalance caused by a crossover within the inversion were seen. Ten (8.1%) of the sperm contained chromosome abnormalities unrelated to the inversion. The ratio of X- to Y-bearing sperm was 55:45.  相似文献   

2.
Summary The sperm chromosomes of a man heterozygous for inv(20)(p13q11.2) were analyzed. Twenty-six sperm chromosome complements were examined, of which fourteen contained the normal chromosome, and twelve the inverted chromosome. None of the sperm complements contained a recombinant chromosome 20. The frequency of structural chromosomal aberrations unrelated to the inversion was 11.5% (3/26). Numerical aberrations were not observed. The percentages of X- and Y-bearing sperm were 56% and 44%, respectively, which was similar to the expected 11 ratio.  相似文献   

3.
Human sperm chromosomes were studied in a man heterozygous for a pericentric inversion of chromosome (1)(p31q12). Q-banded pronuclear chromosomes were analyzed after in vitro penetration of golden hamster oocytes. A total of 159 sperm were examined: 54% bearing the inverted chromosome 1 and 46% the normal chromosome 1. These frequencies are not significantly different from the theoretical 11 ratio. There were no recombinant sperm with duplications or deficiencies, suggesting that a pairing loop failed to form or that crossing-over was suppressed. The frequency of abnormalities unrelated to the inversion was 5% for numerical, 8.8% for structural, 2.5% for numerical and structural, values not significantly different from control donors studied in our lab. The frequencies of X- and Y-bearing sperm were 46% and 54%, respectively, not significantly different from the expected value of 50%. This is the fifth pericentric inversion studied by human sperm chromosome analysis; recombinant chromosomes have been observed in two of the five cases. Some of the factors associated with an increased risk of recombinant sperm appear to be inversion size greater than 30% of the chromosome and chromosome breakpoints in G-light bands.  相似文献   

4.
Summary Human sperm chromosomes were studied in a man heterozygous for a paracentric inversion of chromosome 7 (q11q22). The pronuclear chromosomes were analysed after in vitro penetration of golden hamster (Mesocricetus auratus) eggs. Ninety-four sperm chromosome spreads were examined, of which 34 contained the normal number 7 chromosome and 59 the inverted 6. This segregation was significantly different from the expected 1:1 ratio. The number of X- to Y-bearing sperm was 48 and 46 respectively. No sperm contained a recombinant chromosome caused by a crossover within the inversion. The frequency of chromosomal abnormalities in other chromosomes was 9.6%, which is not significantly different from the frequency observed in normal donors (8.9%) in our laboratory. These result suggest that the risk of chromosomally unbalanced sperm is not high for this paracentric inversion.  相似文献   

5.
We have studied the cytoplasmic mechanism that induces metaphase chromosome condensation in cell-free Xenopus egg extracts. To analyze the mechanism responsible for inducing chromosome condensation separately from those responsible for sperm chromatin remodeling and nuclear envelope disassembly, we used Xenopus sperm chromatin that had already been remodeled to nucleosomal chromatin by incubating demembranated sperm with egg extracts added with lysolecithin. We found that inhibition of cyclin B-Cdc2 with butyrolactone I abolished chromosome condensation of the remodeled sperm chromatin by M-phase egg extracts, but incubation of the chromatin with active cyclin B-Cdc2 alone did not induce chromosome condensation, indicating a requirement for cytoplasmic factor(s) in addition to cyclin B-Cdc2 for the induction of chromosome condensation. We further demonstrated that if the cyclin B-Cdc2-dependent phosphorylation state was protected against dephosphorylation by a preincubation of M-phase extracts with ATP-γ-S, chromosome condensation and phosphorylation of chromosomal histone H1 occurred even when extracts were depleted of cyclin B-Cdc2 activity. The chromosome condensation seen in the absence of cyclin B-Cdc2 was completely inhibited with another protein kinase inhibitor, 6-dimethylaminopurine, implying that a protein kinase other than cyclin B-Cdc2 was involved in the induction of chromosome condensation. These results strongly suggest that a cyclin B-Cdc2-dependent protein kinase cascade is involved in inducing chromosome condensation and the phosphorylation of chromosomal histone H1.  相似文献   

6.
Chromosomal imbalance in gametes and embryos is one of the factors contributing to early embryonic mortality. Although the rate of chromosomally abnormal sperm cells is low and usually does not exceed 1%, there is no clear indication of fertilizing potential of such gametes. The aim of the experiment was to investigate the type and incidence of numerical chromosomal aberrations in spermatozoa produced by fertile boars used in artificial insemination (AI). We used the protocol of fluorescent in situ hybridization (FISH) on sperm interphase nuclei with molecular probes for porcine chromosome pairs 1 and 10. Altogether 12?348 sperm cells were examined. Disomy was observed in spermatozoa of all seven AI boars whereas only one diploid cell was identified in all screened sperm cells. The average rate of chromosomally unbalanced sperm was 0.105% (13/12 348) with an inter-individual variation from 0.048% to 0.194%. Among abnormal sperm cells, both disomy (0.097%) and diploidy (0.008%) were detected. Nullisomy was not included into calculations. The estimated aneuploidy rate calculated by doubling the number of disomic cells was 0.194%. Chromosome pair 10 was significantly more often involved in non-disjunction (75%, 9/12 aneuploid sperm cells) than chromosome pair 1 (25%, 3/12). We have shown for the pig that the rate of disomic cells falls into a range presented by other authors, whereas that of diploid spermatozoa appeared to be lower in the present study. In conclusion, numerical chromosome aberrations were present in spermatozoa of all AI boars analyzed in this study. Therefore, it can be assumed that the presence of unbalanced spermatozoa at the level observed in fertile males does not significantly affect their reproductive potential.  相似文献   

7.
We have analyzed 140 sperm chromosome complements from a subfertile man heterozygous for an inv(7)(p13;q36). Seventy-five percent of the chromosome complements were not recombinant: 37.9% contained the normal chromosome 7, and 37.1% contained the inverted chromosome 7. Twenty-five percent of the 140 were recombinant: 7.1% carried a recombinant chromosome 7 with a duplication p and deletion q, 17.1% carried a recombinant chromosome 7 with a duplication q and deletion p, and 0.7% carried both recombinant chromosomes. The frequency of structural chromosomal aberrations unrelated to the inversion was 11.4%, and the frequency of aneuploidy was 2.9%. Both frequencies were not significantly different from those in control donors. Two sperm complements with a second independent, contiguous inversion involving one of the original breakpoints (q36) were observed (1.4%). The risk of producing chromosomally abnormal offspring or spontaneous abortions would be 34.3%. The proportion of X-bearing and Y-bearing sperm was 46.8% and 53.2%, respectively, not significantly different from the expected 1:1 ratio.  相似文献   

8.
In humans, deviations from a 1:1 male:female ratio have been identified in both chromosomally normal and trisomic live births: among normal newborns there is a slight excess of males, among trisomy 18 live borns a large excess of females, and among trisomy 21 live borns an excess of males. These differences could arise from differential production of or fertilization by Y- or X-bearing sperm or from selection against male or female conceptions. To examine the proportion of Y- and X-bearing sperm in normal sperm and in sperm disomic for chromosomes 18 or 21, we used three-color FISH (to the X and Y and either chromosome 18 or chromosome 21) to analyze >300,000 sperm from 24 men. In apparently normal sperm, the sex ratio was nearly 1:1 (148,074 Y-bearing to 148,657 X-bearing sperm), and the value was not affected by the age of the donor. Certain of the donors, however, had significant excesses of Y- or X-bearing sperm. In disomy 18 sperm, there were virtually identical numbers of Y- and X-bearing sperm; thus, the excess of females in trisomy 18 presumably is due to selection against male trisomic conceptions. In contrast, we observed 69 Y-bearing and 44 X-bearing sperm disomic for chromosome 21. This is consistent with previous molecular studies, which have identified an excess of males among paternally derived cases of trisomy 21, and suggests that some of the excess of males among Down syndrome individuals is attributable to a nondisjunctional mechanism in which the extra chromosome 21 preferentially segregates with the Y chromosome.  相似文献   

9.
Renée Martin 《Chromosoma》1998,107(6-7):523-527
Our studies of human sperm karyotypes and interphase sperm analyzed by fluorescence in situ hybridization (FISH) have both yielded estimates of disomy frequencies of approximately 0.1% per chromosome with an overall aneuploidy frequency in human sperm of approximately 5%–6%. However, the distribution of aneuploidy in sperm is not even, as our data from sperm karyotypes and multicolour FISH analyses both demonstrate a significant increase in the frequency of aneuploidy for chromosome 21 and the sex chromosomes. We have studied men at increased risk of sperm chromosomal abnormalities including cancer patients and infertility patients. Testicular cancer patients were studied before and 2–13 years after chemotherapy (CT) with BEP (bleomycin, etoposide, cisplatin). Sperm karyotype analysis on 788 sperm demonstrated no significant difference in the frequency of numerical or structural chromosomal abnormalities post-CT vs pre-CT. Similarly, multicolour FISH analysis for chromosomes 1, 12, XX, YY and XY in 161,097 sperm did not detect any significant differences in the frequencies of disomy before and after treatment. However, recent evidence has suggested a significant increase in the frequency of disomy and diploidy during CT. We have found that infertile men, who would be candidates for intracytoplasmic sperm injection, have an increased frequency of chromosomally abnormal sperm karyotypes. Also, FISH analysis for chromosomes 1, 12, 13, 21, XX, YY and XY in 255,613 sperm demonstrated a significant increase in chromosomes 1, 13, 21, and XY disomy in infertile men compared with control donors. Received: 4 July 1998; in revised form: 7 September 1998 / Accepted: 8 September 1998  相似文献   

10.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

11.
Summary Nonradioactive in situ hybridization with the biotin-labeled chromosome 1-specific probe pUC1.77 was performed on human mitotic and meiotic chromosomes, and on sperm nuclei. The streptavidine-horseradish-peroxidase and diaminobenzidine detection system demonstrated heteromorphisms in the Iq12 heterochromatic region, not only in mitotic cells but also in mature sperm heads. The localization of chromosome 1 could be traced through all meiotic stages and in the sperm nuclei. The frequency of chromosome 1 disomy in human sperm, as indicated by two distinct hybridization signals, was calculated to be 0.41%.  相似文献   

12.
An analysis of human sperm chromosome breakpoints.   总被引:1,自引:0,他引:1       下载免费PDF全文
Sperm chromosome analysis of 19 sperm donors with either normal or balanced karyotypes was carried out in order to explore the nature of sperm chromosome structural aberrations. A total of 2,389 cells (range 36-298/donor) were karyotyped after in vitro penetration of hamster eggs. The median percentage of sperm structural aberrations was 9.3% (SD +/- 4.7; range 0%-17.8%), with a total of 247 breakpoints, of which 220 could be characterized fully. Two sets of donors were studied in two different centers: center 1 (United States) and center 2 (Spain). The frequencies of nonrejoined and rejoined chromosome-type aberrations were very similar between center 1 and center 2: 83.6% and 10.0%, and 75.0% and 10.3%, respectively. Chromatid-type aberrations were more frequent in center 2 (14.7%) than in center 1 (6.4%) (P = .037). Chromosome 4 had less than the expected number of breakpoints (P < .001). A positive significant correlation was found between sperm breakpoints reported in this study and sites of balanced chromosome de novo rearrangements detected at prenatal diagnosis and reported in the literature (P = .0001).  相似文献   

13.
Summary Using the hamster oocyte/human sperm fusion technique, we studied sperm chromosome complements in two male reciprocal translocation heterozygotes, 46,XY,t(11;17)(p11.2;q12.3) and 46,XY,t(1;11) (p36.3;q13.1). For the t(11;17) carrier, 202 sperm chromosome complements were obtained, but 18 karyotypes were not included in the segregation data because of multiple breaks and rearrangements. The alternate and adjacent I types, adjacent II, and 31 segregations accounted for 38.6%, 32.1%, 26.6%, and 2.7% of the sperm analyzed from the t(11;17) carrier. A total of 575 sperm chromosome complements was obtained using sperm from the t(1;11) heterozygote, and 27 karyotypes were excluded from the segregation data because of multiple breaks and rearrangements. For the t(1;11) carrier, the alternate and adjacent I types, adjacent II, and 31 segregations were responsible for 31.4%, 42.9%, 15.9%, and 8.0% of the analyzed sperm chromosome complements. Chromosomal abnormalities unrelated to the translocation, particularly the conservative estimate of aneuploidy frequency, were within the range observed in normal men. Hence, there was no evidence for an interchromosomal effect causing meiotic nondisjunction, despite the large sample sizes studied.  相似文献   

14.
Infertile men undergoing intracytoplasmic sperm injection have an increased frequency of chromosome abnormalities in their sperm. Men with low sperm concentration (oligozoospermia) have an increased risk of sperm chromosome abnormalities. This study was initiated to determine whether men with severe oligozoospermia (<10(6) sperm/ml) have a higher frequency of chromosome abnormalities in their sperm compared with men with moderate (1-9 x 10(6) sperm/ml) or mild (10-19 x 10(6) sperm/ml) oligozoospermia. Multicolor fluorescence in situ hybridization analysis was performed using DNA probes specific for chromosomes 13, 21, X, and Y (with chromosome 1 as an autosomal control for the sex chromosomes). Aneuploidy and disomy frequencies were assessed from a total of 603,011 sperm from 30 men: 10 in each of the categories. The mean frequencies of disomy for the patients with mild, moderate, and severe oligozoospermia were 0.17%, 0.24%, and 0.30%, respectively, for chromosome 13 and 0.22%, 0.44%, and 0.58%, respectively, for chromosome 21. For the sex chromosomes, the mean frequencies of disomy for mild, moderate, and severe oligozoospermia were 0.25%, 1.04%, and 0.68%, respectively, for XY, 0.047%, 0.08%, and 0.10%, respectively, for XX, and 0.04%, 0.06%, and 0.09%, respectively, for YY. The frequencies for diploidy also increased from 0.4% for mild to 1.20% for moderate to 1.24% for severe oligozoospermia. There was a significant inverse correlation between the frequency of sperm chromosome abnormalities and the sperm concentration for XY, XX, and YY disomy and diploidy. These results demonstrate that men with severe oligozoospermia have an elevated risk for chromosome abnormalities in their sperm, particularly sex chromosome abnormalities.  相似文献   

15.
A case with an apparently balanced reciprocal translocation between the long arm of the Y chromosome and the short arm of chromosome 1 t(Y;1)(q11.2;p34.3) is described. The translocation was found in a phenotypically normal male ascertained by infertility and presenting for intra-cytoplasmatic sperm injection treatment. Histological examination of testicular biopsies revealed spermatogenic failure. Chromosome painting with probes for chromosome 1 and for the euchromatic part of the Y chromsome confirmed the translocation of euchromatic Y chromosomal material onto the short arm of chromosome 1 and of a substantial part of the short arm of chromosome 1 onto the Y chromosome. Among the Y/autosome translocations, the rearrangements involving long arm euchromatin of the Y chromosome are relatively rare and mostly associated with infertility. Microdeletion screening at the azoospermia locus revealed no deletions, suggesting another mechanism causing infertility in this translocation carrier.  相似文献   

16.
Meiotic segregation products of carriers with pericentric inversion are very important for assessing the risk of unbalanced forms and appropriate genetic counseling. We investigated the incidence of recombinant and nonrecombinant products of chromosome 1 with pericentric inversion, in the sperm nuclei of the carrier by using triple color fluorescence in situ hybridization (FISH). The centromere specific and telomere specific probes for chromosome 1 were used. In the segregation analysis, 1,636 sperm nuclei were analyzed; 82.5% of the sperms were including normal or inverted chromosome 1, and the dup(p)/del(q) and del(p)/dup(q) recombinant products in sperm nuclei of our carrier were 8.7 and 7.3%, respectively. The number of recombinant products may be dependent on the formation of an inversion loop, which the number of the formation of chiasmata results in the different number of normal/balanced and recombinant products. The use of FISH, using different probe combination, in sperm nuclei has proved to be an accurate approach to determine the meiotic segregation patterns and could help to better establish a reproductive prognosis and genetic counseling.  相似文献   

17.
The chronology of Y chromosome replication in meiosis of male adult rats was investigated. 3HTdR was injected into the testes and animals were sacrificed at 2-hour intervals from 2 to 24 hour after the injection; and at 2-day intervals from 2 to 64 days after the injection. Autoradiograms from germ line cell spreads were prepared. The study of spermatogonial metaphases showed that the Y chromosome is the last to begin and end DNA synthesis. Consequently, by detecting such a pattern of replication it was possible to trace the asynchronous Y from spermatogonia to sperm. Assuming that Y chromosomes are early replicating in preimplantation embryos of mammals it is proposed that Y chromosome of rats shift from late to early replicating in the first divisions of the fertilized egg. Moreover, the analysis of the patterns of sperm labeling allow one to infer that chromosomes are end-to-end associated in sperm nuclei, and that the Y chromosome and perhaps autosomes as well occupy a constant position in sperm of rats.  相似文献   

18.
Both structural and numerical chromosome aberrations in sperm represent important categories of paternally transmitted genetic damage. Therefore, a new multiprobe fluorescence in situ hybridization (FISH) method, using DNA probes for three targets (centromere and telomere of chromosome 1, centromere of chromosome 8), was developed to detect human sperm carrying three types of chromosomal defects: (1) terminal duplications or deletions in chromosome 1p, (2) aneuploidy involving chromosomes 1 or 8, and (3) diploidy. Baseline frequencies were determined for three healthy donors who had been previously evaluated for sperm cytogenetics by the human-sperm/hamster-oocyte cytogenetic technique (hamster technique). Among ∼120 000 sperm analyzed by the new FISH method, the average baseline frequencies of sperm carrying telomeric duplications and deletions of 1p were 3.2 ± 1.9 and 2.9 ± 3.6 per 104, respectively. Diploid sperm was found in an average frequency of 6.6 ± 4.0 per 104. Average frequencies of disomic sperm for chromosomes 1 or 8 were 1.7 ± 2.2 and 1.9 ± 2.3 per 104, respectively. Inter-individual differences were observed for deletions of 1p but not for the other sperm phenotypes. A good correlation was obtained between the frequencies of sperm with structural chromosome aberrations detected with the new assay and the frequency of sperm carrying premeiotic or meiotic cytogenetic damage detected with the hamster technique. The observed levels of numerical aberrations with the new FISH assay were within range of the baseline frequencies reported by the hamster technique. The newly developed FISH assay has promising applications in genetic, clinical, physiological and toxicological studies. Received: 26 February 1996 / Revised: 6 May 1996  相似文献   

19.
The chromosome complements in a population of mouse sperm from random-bred ICR donors were analyzed at first-cleavage metaphase after in vitro fertilization (IVF) of oocytes from females of the same strain. The sperm were aged as donations occurred within an average of 31 days, either since last mating or at arrival at the animal facility in the case of virgin males. Of a total of 598 sperm complements studied from 22 sexually mature males aged 10–26 weeks old, there was one diploid complement (0.17%). The frequencies of hyperhaploidy and structural aberrations that were studied in 338 complements were 4.4% and 3.6%, respectively, giving an overall frequency of 8.0%. The hyperhaploid complements consisted of n + 1, n + 2, n + 3, and n + 7 counts, while the structural abnormalities were of the chromosome type and included large and small fragments and a possible translocation. This is the highest frequency of sperm chromosome abnormalities reported for mouse sperm obtained from males under physiological conditions and fertilized in vitro or in vivo. Sperm aging, strain, and/or technique differences are among the factors that may be responsible for this high frequency. Since the 8.0% frequency of hyperhaploidy and structural abnormalities is similar to the frequency reported for human sperm after IVF, the outbred murine in vitro fertilization system may be a useful model to study the origin of human sperm chromosome abnormalities.  相似文献   

20.
Summary Chromosomal analysis of 1000 spermatozoa from 33 normal men was performed using in vitro fertilization of zonafree golden hamster eggs. The frequency of abnormal sperm complements was 8.5%: 5.2% were aneuploid and 3.3% had a structural chromosome abnormality. The frequencies of hyperhaploid (2.4%) and hypohaploid (2.7%) sperm complements were not significantly different and all chromosome groups were represented among the aneuploid complements. The majority (22/33) of structurally abnormal complements had a chromosome break. The percentages of X and Y-bearing sperm were 53.9% and 46.1%, which is significantly different from the expected one to one ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号