首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cup wear and inclination on the pelvic bone are significant factors, which change the contact of the articulating surfaces, thus, impacting the long-term performance of hip implants. This paper presents a finite element (FE) analysis of the contact of the dual mobility implants under the influence of cup wear and inclination. A 3D FE model of the implant was developed with the application of equivalent physiological loading and boundary conditions. Effects of cup inclination angle ranging from 45° to 60° and the wear depth ranging from 0 to 2.46 mm equivalent to up to 30 years of the implant's life on the contact pressure and von Mises stress were investigated. Simulation results show that the contact pressure and von Mises stress decrease significantly with a modest wear depth and remains quite in-sensitive to the cup inclination angle and wear depth up to 1.64 mm. With wear depth further up to 2.46 mm, the cup thickness (i.e. cup thinning on worn region) may be more predominant than increasing of contact area between the cup and the head. The wear on the inner surface of the cup is found to rule out the overall contact pressure and stress in the implant. Furthermore, individual and combined effects of both important parameters are analysed and discussed with respect to available clinical/laboratory studies.  相似文献   

2.
<正> Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Ceramic-on-Ceramic (COC) hip resurfacingprostheses. It was focused in particular on a parametric study to examine the effects of radial clearance, loading,alumina coating on the implants, bone quality, and fixation of cup-bone interface. It was found that a reduction in the radialclearance had the most significant effect on the predicted contact pressure distribution among all of the parameters considered inthis study. It was determined that there was a significant influence of non-metallic materials, such as the bone underneath thebearing components, on the predicted contact mechanics. Stress shielding within the bone tissue was found to be a major concernwhen regarding the use of ceramic as an alternative to metallic resurfacing prostheses. Therefore, using alumina implantswith a metal backing was found to be the best design for ceramic resurfacing prostheses in this study. The loading, bone quality,and acetabular cup fixation conditions were found to have only minor effects on the predicted contact pressure distribution alongthe bearing surfaces.  相似文献   

3.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

4.
The stability of cementless acetabular cups depends on a close fit between the components and reamed acetabular cavities to promote bone ingrowth. Cup performance and stability are affected by both design and environmental (patient-dependent and surgical) factors. This study used a statistically based metamodel to determine the relative influences of design and environmental factors on acetabular cup stability by incorporating a comprehensive set of patient-dependent and surgical variables. Cup designs with 2 mm or 3 mm intended equatorial bone-implant interferences appeared to perform the best, improving implant stability with smaller mean and variability in cup relative motions and greater mean and smaller variability in ingrowth areas. Cup eccentricity was found to have no effect on implant performance. Design variables did not contribute as much to the variation in performance measures compared to the environmental variables, except for potential ingrowth areas.  相似文献   

5.
Aseptic loosening from polyethylene wear debris is the leading cause of failure for metal-on-polyethylene total hip implants. Third-body debris ingress to the bearing space results in femoral head roughening and acceleration of polyethylene wear. How third-body particles manage to enter the bearing space between the closely conforming articulating surfaces of the joint is not well understood. We hypothesize that one such mechanism is from convective fluid transport during subluxation of the total hip joint. To test this hypothesis, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated, to quantify fluid ingress into the bearing space during a leg-cross subluxation event. The results indicated that extra-articular joint fluid could be drawn nearly to the pole of the cup with even very small separations of the femoral head (<0.60mm). Debris suspended near the equator of the cup at the site of maximum fluid velocity just before the subluxation began could be transported to within 11 degrees from the cup pole. Larger head diameters resulted in increased fluid velocity at all sites around the entrance to the gap compared to smaller head sizes, with fluid velocity being greatest along the anterosuperolateral cup edge, for all head sizes. Fluid pathlines indicated that suspended debris would reach similar angular positions in the bearing space regardless of head size. Increased inset of the femoral head into the acetabular cup resulted both in higher fluid velocity and in transport of third-body debris further into the bearing space.  相似文献   

6.
In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ?A) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ?A. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.  相似文献   

7.
Total replacement of the glenohumeral joint provides an effective means for treating a variety of pathologies of the shoulder. However, several studies indicate that the procedure has not yet been entirely optimized. Loosening of the glenoid component remains the most likely cause of implant failure, and generally this is believed to stem from either mechanical failure of the fixation in response to high tensile stresses, or through osteolysis of the surrounding bone stock in response to particulate wear debris. Many computational studies have considered the potential for the former, although only few have attempted to tackle the latter. Using finite-element analysis an investigation, taking into account contact pressures as well as glenohumeral kinematics, has thus been conducted, to assess the potential for polyethylene wear within the artificial shoulder. The relationships between three different aspects of glenohumeral design and the potential for wear have been considered, these being conformity, polyethylene thickness, and fixation type. The results of the current study indicate that the use of conforming designs are likely to produce slightly elevated amounts of wear debris particles when compared with less conforming joints, but that the latter would be more likely to cause material failure of the polyethylene. The volume of wear debris predicted was highly influenced by the rate of loading, however qualitatively it was found that wear predictions were not influenced by the use of different polyethylene thicknesses nor fixation type while the depth of wearing was. With the thinnest polyethylene designs (2 mm) the maximum depth of the wear scar was seen to be upwards of 20% higher with a metal-backed fixation as opposed to a cemented design. In all-polyethylene designs peak polymethyl methacrylate tensile stresses were seen to reduce with increasing polyethylene thickness. Irrespective of the rate of loading of the shoulder joint, the current study indicates that it is possible to optimize glenoid component design against abrasive wear through the use of high conformity designs, possessing a polyethylene thickness of at least 6 mm.  相似文献   

8.
A new finite element model (FEM) based on an elasto-plastic behavior of ultra high molecular weight polyethylene (UHMWPE) was used to study the wear behavior of UHMWPE acetabular cup, which has a 32 mm diameter femoral head. The model imposed a plastic yield stress of 8 MPa on the UHMWPE so that any stresses beyond this would automatically be redistributed to its neighbor. The FEM model adopted a unique mesh design based on an open cube concept which eliminated the problems of singularities. Wear prediction combined the influences of contact stress, sliding distance and a surface wear coefficient. The new model predicted significantly higher volumetric wear rate (57 mm(3)/yr) well within the average reported clinical values. The model was also used to study the effect of friction and clearance between the acetabular cup and the femoral head. Increase in friction increased the volumetric wear rate but did not appear to affect the linear wear rate, which remained at 0.12 +/- 0.02 mm/yr. The predicted wear was sensitive to clearance. It was found that when the clearance was close to 0 and >0.5mm, severe wear occurred. The best clearance range was between 0.1 and 0.15 mm where the average linear wear rate was 0.1mm/yr and the volumetric wear was 55 mm(3)/yr. The present work indicates the importance of avoiding too tight or too loose a diametrical clearance.  相似文献   

9.
Late loosening of cemented acetabular cups is increasingly being recognized as a clinical problem. One of the factors which may contribute to loosening is high localized deformation and stress at the cement-bone interface, the magnitude of which depends on the size of the total hip replacement (THR) femoral head. The effects of varying the femoral head size, from 22 to 32 mm, on strain values measured on the surface of the cup were investigated using experimental stress analysis techniques. The largest absolute strains were recorded when loading with the 22 mm head size. Peak strain values decreased to a minimum with the 26 mm head size and increased steadily with head sizes beyond 26 mm. The selection of an acetabular cup size and corresponding femoral head size in a total hip arthroplasty should not be an arbitrary one, but should be based on scientific studies which indicate minimum states of stress within the cup and cement mantle, as well as clinical evidence that the combination of components shows a reduced incidence of failure. This study experimentally quantifies the states of stress on the surface of the acetabular cup and points to the possible existence of an optimum component size to minimize surface stress.  相似文献   

10.
A Strain energy density (SED) criterion based on a fracture mechanics approach was used to assess the possible failure of acetabular bone cement after total hip replacement. Stress distributions in the cement at the bone-cement interface were calculated using two-dimensional finite element analyses. The results indicate that increasing the thickness of bone cement reduces the risk of cement fracture. The addition of a metal backing to the polyethylene cup and retention of the subchondral bone further reduces the risk of failure. The SED criterion was found to predict the same critical regions as zones of possible cement failure as the von Mises' criterion. Although either criterion can be used for predicting failure in this acetabular analysis both criteria are excessively conservative in predicting failure in regions where high principal compressive stresses are present. Further development of cement failure criteria are indicated.  相似文献   

11.
An effective lubrication can significantly reduce wear of metal-on-metal artificial hip joints. The improvement of the lubrication can be achieved through the optimisation of the bearing geometry in terms of a small clearance and/or the structural support such as a polyethylene backing underneath a metallic bearing in a sandwich acetabular cup form. The separate effects of these two factors on fluid film lubrication of 28 mm diameter metal-on-metal total hip joints under walking conditions were numerically investigated in this paper. The results show that a larger lubricant film due to the polyethylene backing can be significantly enhanced by the transient squeeze-film action, particularly during the stance phase, and a similar lubricant film can be developed for both the monolithic cup relying on the smaller clearance and the sandwich cup benefiting from the polyethylene backing. Both cup systems can function in a wide range of lubrication regimes, covering both mixed and fluid film, under the current design and manufacture conditions.  相似文献   

12.
AIM: Most methods used for the determination of volumetric wear of polyethylene cups are based on the assumption that the head of the prosthesis penetrates the cup in "cylindrical" fashion. The new accurate optical method is independent of this disputable assumption. METHOD: The articulating surface of the cup is scanned with light and a data set of 60,000 pixels obtained in this way is stored in a computer. Data obtained from used cups were compared with those obtained from unused cups. The volumetric wear was calculated directly by threefold integration. To assess the changes in surface shape, the data are fitted by an ellipsoid whose long axis defines the mean direction of load. A total of 18 retrieved and 3 unused cups of different types were studied. RESULTS: The unused acetabular cups deviated only slightly from ideal hemispheres. The surfaces showed rotational symmetry, and an undulation having an amplitude of 0.1 mm between dome and equator. For all explanted cups, the assumption of cylindrical penetration of the head into the polyethylene was shown not to represent the true situation. The cup expands in all directions, and the volumetric wear is underestimated by 50% with the traditional methods. The data suggest that long-term survival may be jeopardized when the main direction of loading is centered on the dome of the cup. Ceramic heads were associated with smaller rates of volumetric wear. CONCLUSION: The new optical method is characterised by short measuring times, precision and simple application. Analysis of the wear patterns of polyethylene components using this technique may contribute to a further understanding of the complex mechanisms of aseptic loosening.  相似文献   

13.
Bone ingrowth simulation for a concept glenoid component design   总被引:5,自引:0,他引:5  
Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.  相似文献   

14.
Polyethylene wear after total hip arthroplasty may occur as a result of normal gait and as a result of subluxation and relocation with impact. Relocation of a subluxed hip may impart a moment to the cup creating sliding as well as compression at the cup liner interface. The purpose of the current study is to quantify, by a validated finite element model, the forces generated in a hip arthroplasty as a result of subluxation relocation and compare them to the forces generated during normal gait. The micromotion between the liner and acetabular shell was quantified by computing the sliding track and the deformation at several points of the interface. A finite element analysis of polyethylene liner stress and liner/cup micromotion in total hip arthroplasty was performed under two dynamic profiles. The first profile was a gait loading profile simulating the force vectors developed in the hip arthroplasty during normal gait. The second profile is generated during subluxation and subsequent relocation of the femoral head. The forces generated by subluxation relocation of a total hip arthroplasty can exceed those forces generated during normal gait. The induced micromotion at the cup polyethylene interface as a result of subluxation can exceed micromotion as a result of the normal gait cycle. This may play a significant role in the generation of backsided wear. Minimizing joint subluxation by restoring balance to the hip joint after arthroplasty should be explored as a strategy to minimize backsided wear.  相似文献   

15.
The transient elastohydrodynamic lubrication (EHL) analysis was performed in this study for a typical metal-on-metal bearing employing a polyethylene backing underneath a metallic cup inlay under dynamic operating conditions of load and speed representative of normal walking. A ball-in-socket configuration was adopted to represent the articulation between the femoral head and the acetabular cup. The governing Reynolds and elasticity equations were solved simultaneously by using both finite difference and finite element methods. The predicted transient film thickness from the present study was compared with the estimation based on the quasi-static analysis. It was found that the polyethylene backing employed in the typical metal-on-metal hip bearing, combined with dynamic squeeze-film action, significantly improved the transient lubricant film thickness under cyclic walking and consequently a fluid film lubrication regime was possible for smooth bearing surfaces with an average roughness less than 0.005 microm.  相似文献   

16.
After total hip arthroplasty, impingement of implant components may occur during every-day patient activities causing increased shear stresses at the acetabular implant-bone interface. In the literature, impingement related lever-out moments were noted for a number of acetabular components. But there is little information about pelvic load transfer. The aim of the current study was to measure the three-dimensional strain distribution at the macrostructured hemispherical interface and in the periphery of a standard acetabular press-fit cup in an experimental implant-bone substitute model. An experimental setup was developed to simulate impingement loading via a lever arm representing the femoral component and the lower limb. In one experimental setup 12 strain gauges were embedded at predefined positions in the periphery of the acetabular cup implant inside a tray, using polyurethane composite resin as a bone substitute material. By incremental rotation of the implant tray in steps of 10 and 30 deg, respectively, the strains were measured at evenly distributed positions. With the described method 288 genuine strain values were measured in the periphery of an embedded acetabular cup implant in one experimental setup. In two additional setups the strains were evaluated at different distances from the implant interface. Both in radial and meridional interface directions strain magnitudes reach their peak near the rim of the cup below the impingement site. Values of equatorial strains vary near zero and reach their peaks near the rim of the cup on either side and in some distance from the impingement site. Interestingly, the maximum of averaged radial strains does not occur, as expected, close to the interface but at an interface offset of 5.6 mm. With the described experimental setup it is now possible to measure and display the three-dimensional strain distribution in the interface and the periphery of an embedded acetabular cup implant. The current study provides the first experimental proof of the high local stresses gradients in the direct vicinity of the impingement site. The results of the current study help for a better understanding of the impingement mechanism and its impact on acetabular cup stability.  相似文献   

17.
Squeaking of hip replacements with ceramic-on-ceramic bearings has put the use of this material into question despite its superior wear behavior. Squeaking has been related to implant design. The purpose of this study was to determine the influence of particular acetabular cup and femoral stem designs on the incidence of squeaking and its characteristics. The dynamic behavior of the stem, head and stem assembled with head was investigated by determining their eigenfrequencies using experimental and numerical modal analysis. Four different stem and three different cup designs were investigated. Operational system vibrations resulting in audible squeaking were reproduced in a hip simulator and related to the respective component eigenfrequencies. The applied joint load and bearing clearance were varied in the clinically relevant range. Stems with lower eigenfrequencies were related to lower squeaking frequencies and increased acoustic pressure (loudness), and therefore to a higher susceptibility to squeaking. Higher load increased the squeaking frequency, while the acoustic pressure remained unchanged. No influence of the clearance or the cup design was found. Stem design was found to have an important influence on squeaking characteristics and its incidence, confirming and explaining similar clinical observations. Cup design itself was found to have no major influence on the dynamic behavior of the system but plays an important indirect role in influencing the magnitude of friction: Squeaking only occurs if the friction in the joint articulation is sufficient to excite vibrations to audible magnitudes. If friction is low, no squeaking occurs with any of the designs investigated.  相似文献   

18.
The stress distribution in a human femur with an endoprosthesis was determined. The finite element method (FEM) was used for a three-dimensional model with more than 15000 degrees of freedom. Geometrical and material data had been taken for this model from a left femur with endoprosthesis. On the contralateral bone a strain gauge investigation was performed to validate the calculations. Reasonable agreement was achieved. Various modes of loading were investigated. A perfect bond at the interface between materials of different elastic moduli was assumed. The results are valid for endoprosthesis with such structured stem surfaces as allow transfer of tensile and shear stresses.  相似文献   

19.
Failure of total knee arthroplasty is relatively often caused by problems of the patellofemoral replacement. The purpose of this study was to analyze the distribution of stresses within an anatomical patella and the changes in stress distribution after patellar resurfacing with a Miller-Galante I patellar implant using two- and three dimensional finite element models (FEM). To assess validity, FEM results were compared with morphological findings from contact radiographs and densitographs. Internal orientation of bone trabeculae is in good agreement with the orientation of theoretically calculated principal stresses. Almost unchanged principal tensile stresses after implantation, together with the lack of extreme stress peaks within the cancellous bone ensure stress compatibility of the implant. In the case of a firmly seated implant with good bone ingrowth, increased von Mises stresses are found near the fixation peg/plate junction. Their relevance for improved bone ingrowth near this part of the interface is emphasized. At the same time, material failure at the peg/plate junction can be better understood. An analysis of the early postoperative period assuming nonlinear interface conditions failed to demonstrate an uniform distribution of normal and tangential interface forces.  相似文献   

20.
Biphasic properties of articular cartilage allow it to be an excellent bearing material and have been studied through several simplified experiments as well as finite element modelling. However, three-dimensional biphasic finite element (FE) models of the whole joint are rare. The current study was carried out to experimentally validate FE methodology for modelling hemiarthroplasty. Material properties such as equilibrium elastic modulus and permeability of porcine acetabular cartilage were initially derived by curve-fitting an experimental deformation curve with that obtained using FE. These properties were then used in the hemiarthroplasty hip joint modelling. Each porcine acetabular cup was loaded with 400N using a 34mm diameter CoCr femoral head. A specimen-specific FE model of each acetabular cup was created using μCT and a series of software processes. Each model was analysed under conditions similar to those tested experimentally. Contact stresses and contact areas predicted by the model, immediately after loading, were then compared with the corresponding experimentally measured values. Very high peak contact stresses (maximum experimental: 14.09MPa) were recorded. A maximum difference of 12.42% was found in peak contact stresses. The corresponding error for contact area was 20.69%. Due to a fairly good agreement in predicted and measured values of contact stresses and contact areas, the integrated methodology developed in this study can be used as a basis for future work. In addition, FE predicted total fluid load support was around 80% immediately after loading. This was lower than that observed in conforming contact problems involving biphasic cartilage and was due to a smaller local contact area and variable clearance making fluid exudation easier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号