首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The percentage of T and B lymphocytes expressing a distinct cytoplasmic aggregate enriched in spectrin, ankyrin, and in several other proteins including protein kinase C greatly increases following various activation protocols. Members of the 70 kDa family of heat shock proteins (hsp70) temporarily bind to and stabilize unfolded segments of other proteins, a function apparently required for proper protein folding and assembly. Considering the multiprotein and dynamic nature of the lymphocyte aggregate, the possibility that hsp70 also might be associated with componets of this structure is considered here. Double immunofluorescence analysis indicates that hsp70 is a component of the lymphocyte aggregate and is coincident with spectrin in a subpopulation of freshly isolated, untreated lymphocytes from various murine tissues and in a T-lymphocyte hybridoma. When cell lysates of lymph node T cells are immunoprecipitated using an antibody against hsp70 or spectrin and then analyzed by Western blot utilizing the alternate antibody, it was found that hsp70 and spectrin coprecipitated with one another. Moreover, this coprecipitation could be abolished by addition of ATP. This latter observation was extended to lymphoid cells using a transient permeabilization procedure, and it was shown that addition of exogenous ATP results in the dissipation of the aggregate structure itself. Finally, conditions that result in T-cell activation and aggregate formation, i.e., treatment with the phorbol ester PMA or T-cell receptor cross-linking, also lead to the repositioning of hsp70 into the aggregate from a membrane/cytosolic locale in congruence with spectrin. These data suggest that hsp70 is an active component of the aggregate and that it may function in the interactions believed to occur in this unique activation-associated organelle. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The structure of the membrane skeleton on the cytoplasmic surface of the erythrocyte plasma membrane was observed in dried human erythrocyte ghosts by atomic force microscopy (AFM), taking advantage of its high sensitivity to small height variations in surfaces. The majority of the membrane skeleton can be imaged, even on the extracellular surface of the membrane. Various fixation and drying methods were examined for preparation of ghost membrane samples for AFM observation, and it was found that freeze-drying (freezing by rapid immersion in a cryogen) of unfixed specimens was a fast and simple way to obtain consistently good results for observation without removing the membrane or extending the membrane skeleton. Observation of the membrane skeleton at the external surface of the cell was possible mainly because the bilayer portion of the membrane sank into the cell during the drying process. The average mesh size of the spectrin network observed at the extracellular and cytoplasmic surfaces of the plasma membrane was 4800 and 3000 nm2, respectively, which indicates that spectrin forms a three-dimensionally folded meshwork, and that 80% of spectrin can be observed at the extracellular surface of the plasma membrane.  相似文献   

3.
We used high-resolution EM and immunocytochemistry in combination with different specimen preparation techniques to resolve the ultrastructure of the resting platelet cytoskeleton. The periphery of the cytoskeleton, an electron-dense subplasmalemmal region in thin section electron micrographs, is a tightly woven planar sheet composed of a spectrin-rich network whose interstices contain GPIb/IX-actin-binding protein (ABP) complexes. This membrane skeleton connects to a system of curved actin filaments (F-actin) that emanate from a central oval core of F-actin cross-linked by ABP. The predominant interaction of the radial actin filaments with the membrane skeleton is along their sides, and the strongest connection between the membrane skeleton and F-actin is via ABP-GPIb ligands, although there is evidence for spectrin attaching to the ends of the radial actin filaments as well. Since a mechanical separation of the F-actin cores and radial F-actin-GPIb-ABP complexes from the underlying spectrin-rich skeleton leads to the latter's expansion, it follows that the spectrin-based skeleton of the resting cell may be held in a compressed form by interdigitating GPIb/IX complexes which are immobilized by radial F-actin-ABP anchors.  相似文献   

4.
Immunofluorescent patterns of spectrin in lymphocyte cell lines   总被引:4,自引:0,他引:4  
Spectrin, a membrane-associated cytoskeletal protein, has been observed in all of 45 lymphoid and myeloid cell lines examined. For these experiments, formalin-fixed cells from randomly selected lines propagated by using conventional tissue culture procedures were examined by immunofluorescence, using an antibody directed against chicken erythrocyte alpha-spectrin. Two distinct immunofluorescent patterns of spectrin distribution were identified. In most lines examined (16 mouse and 18 human lymphoid or myeloid lines), spectrin was symmetrically distributed near the submembranous region of the plasma membrane. In the remainder of the cell lines examined, a second pattern was observed; in these cultures, the cells contain a polar submembranous aggregate of spectrin with little staining at the rest of the plasma membrane. Long-term T lymphocyte cell lines in which greater than 60% of the cells expressed a polar submembranous aggregate of spectrin (PSA-S) include mouse cell lines EL-4, LBRM-33, CT-6X, NIXT, 22CM-37, and 7ON-2 and human lines JM and PEER. Other established cultures in which PSA-S were observed included the human macrophage-like line U-937 and gibbon T cell line MLA-144. Phorbol myristate acetate or mezerin caused a reversible alteration in the distribution of spectrin in these cell lines. These drugs, which increase membrane fluidity, caused a complete but temporary symmetrical redistribution of the spectrin aggregate. Our results indicate that the pattern of spectrin distribution, either aggregated or evenly dispersed, is a stable characteristic (but one that can be altered) in various cell lines, and that because similar variations in pattern have been noted in situ, it is likely that the pattern present in any given cell line reflects a characteristic associated with a particular stage of a cell's maturation. It is anticipated that these cell lines, positive and negative for the expression of natural polarity of spectrin distribution, will provide useful models for future studies to define further the role of spectrin in lymphocyte plasma membrane functions.  相似文献   

5.
Many B and T lymphocytes display a significant heterogeneity with respect to the subcellular distribution of the cytoskeletal protein spectrin and protein kinase C (PKC), both of which often can be found in a large cytoplasmic aggregate in these cell types. In addition to spectrin and PKC, we recently have reported that HSP70 is also a component of this lymphocyte aggregate. Moreover, these three proteins can undergo dynamic and reversible changes in their localization causing “assembly” of the aggregate in response to various conditions associated with lymphocyte activation, indicating that this naturally occurring aggregate structure is sensitive to activation status. We show here that the same changes in HSP70/spectrin/PKC localization induced by PKC activation also can be caused, in vitro and in vivo, by a mild hyperthermia exposure, as occurs during a natural fever (39.5–40°C, 2–12 hr). This mild heat exposure also triggers the activation of PKC, a major heat shock response, and lymphocyte proliferation. The increase in PKC activity, HSP70-spectrin-PKC aggregate formation, and heat shock protein expression resulting from exposure to fever-like hyperthermia are all inhibited by calphostin C, a specific inhibitor of PKC. These data demonstrate that changes observed during lymphocyte activation could be induced by a mild hyperthermia exposure occurring during a normal febrile episode. J. Cell. Physiol. 172:44–54, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Ankyrin is a well characterized membrane skeletal protein which has been implicated in the anchorage of specific integral membrane proteins to the spectrin-based membrane skeleton in a number of systems. In this study, the organization of ankyrin was examined in lymphocytes in relation to T cell function. Light and electron microscope immunolocalization studies revealed extensive heterogeneity in the subcellular distribution of ankyrin in murine tissue-derived lymphocytes. While ankyrin can be localized at the lymphocyte plasma membrane, it can also be accumulated at some distance from the cell periphery, in small patches or in a single discrete, nonmembrane-bound structure. Double immunofluorescence studies demonstrated that ankyrin colocalizes with spectrin and with the signal transducing molecule protein kinase C beta (PKC beta) in tissue-derived lymphocytes, suggesting a functional association between these molecules in the lymphocyte cytoplasm. In addition, T lymphocyte activation-related signals and phorbol ester treatment, both of which lead to PKC activation, cause a rapid translocation of ankyrin, together with spectrin and PKC beta, to a single Triton X-100-insoluble aggregate in the cytoplasm. This finding suggests a mechanism for the reported appearance of PKC in the particulate fraction of cells after activation: activated lymphocyte PKC beta may interact with insoluble cytoskeletal elements like ankyrin and spectrin. Further evidence for a link between the subcellular organization of these proteins and PKC activity is provided by the observation that inhibitors of PKC activity cause their concomitant redistribution to the cell periphery. The dynamic nature of lymphocyte ankyrin and its ability to accumulate at sites distant from the plasma membrane are properties which may be unique to the lymphocyte form of the molecule. Its colocalization with PKC beta in the lymphocyte cytoplasm, together with its redistribution in response to physiological signals, suggests that structural protein(s) may play a role in signal transduction pathways in this cell type. Our data support the conclusion that ankyrin is not solely involved in anchorage of proteins at the plasma membrane in lymphoid cells.  相似文献   

7.
The cytoskeletal proteins spectrin and ankyrin colocalize with sites of E-cadherin-mediated cell-cell adhesion in mammalian cells. Here we examined the effects of Drosophila DE-cadherin expression on spectrin and ankyrin in Drosophila S2 tissue culture cells. DE-cadherin caused a dramatic change in the cytoplasmic concentration and distribution of armadillo, the Drosophila homolog of beta catenin. However, DE-cadherin expression had no detectable effect on the quantity or subcellular distribution of ankyrin or spectrin. In reciprocal experiments, recruitment of ankyrin and alphabeta spectrin to the plasma membrane by another cell adhesion molecule, neuroglian, had no effect on the quantity or distribution of armadillo. The results indicate that DE-cadherin-catenin complexes and neuroglian-spectrin/ankyrin complexes form by nonintersecting pathways. Recruitment of spectrin does not appear to be a conserved feature of DE-cadherin function.  相似文献   

8.
Structures analogous to Drosophila spectrosomes were found in mammalian lymphocytes. Repasky and colleagues discovered an intracellular spectrin-rich structure in lymphoid cells, which had far-reaching parallels with the fusome/spectrosome of D. melanogaster germ cells. This fact implies that spectrosomes may be characteristic not only of insect germ cells, but also that an analogous structure may play an important role in other cell types. The term "spectrosome" was first used by Lin and Spradling in 1995 to describe a large sphere of fusomal material in D. melanogaster germline stem cells and their differentiated daughter cells - cytoblasts. In the D. melanogaster ovary, membrane skeletal proteins such as ankyrin, alpha/beta spectrin as well as adducin-like Hts protein(s) were found in this specific organelle - spectrosome/fusome. These orgalelles are involved in the creation of mitotic spindles and D. melanogaster cyst formation and oocyte differentiation, but the role of analogous spectrin-based aggregates found in nucleated cells still remains unclear.  相似文献   

9.
M Langner  E A Repasky  S W Hui 《FEBS letters》1992,305(3):197-202
We have previously established that T and B lymphocytes in situ are remarkably heterogeneous with respect to the cytoskeletal protein spectrin. Since in erythrocytes spectrin is known to play an important role in the regulation of membrane fluidity, lipid organization and lateral mobility of membrane proteins, we have sought to determine if the heterogeneous patterns of spectrin distribution that we have observed are related to possible differences in membrane lipid organization in these various subsets. To this end, we have utilized a fluorescent pyrene-labelled phospholipid as a probe of the lipid lateral mobility and have examined two related T cell systems maintained in vitro, DO.11.10 cells and a spontaneously arising variant, DO.11.10V. In these (and other cloned in vitro systems) we have previously observed that the cells homogeneously express one of the kinds of spectrin distribution patterns observed in situ. Thus the uniformity of staining of these systems permits us to address whether the various patterns of spectrin distribution may be predictive of differences in membrane lipid properties. Here we show that in cells in which there is little or nor spectrin at the plasma membrane (DO.11.10) that the lipids in the plasma membrane are considerably less mobile than in its related variant in which spectrin is diffusely distributed within the cell and at the plasma membrane. From this and previous results, we conclude that differences in the distribution of the cytoskeletal protein spectrin among lymphocytes may be a useful parameter in helping to predict the status of membrane lipid organization.  相似文献   

10.
Drosophila spectrin: the membrane skeleton during embryogenesis   总被引:12,自引:9,他引:3       下载免费PDF全文
《The Journal of cell biology》1989,108(5):1697-1709
The distribution of alpha-spectrin in Drosophila embryos was determined by immunofluorescence using affinity-purified polyclonal or monoclonal antibodies. During early development, spectrin is concentrated near the inner surface of the plasma membrane, in cytoplasmic islands around the syncytial nuclei, and, at lower concentrations, throughout the remainder of the cytoplasm of preblastoderm embryos. As embryogenesis proceeds, the distribution of spectrin shifts with the migrating nuclei toward the embryo surface so that, by nuclear cycle 9, a larger proportion of the spectrin is concentrated near the plasma membrane. During nuclear cycles 9 and 10, as the nuclei reach the cell surface, the plasma membrane-associated spectrin becomes concentrated into caps above the somatic nuclei. Concurrent with the mitotic events of the syncytial blastoderm period, the spectrin caps elongate at interphase and prophase, and divide as metaphase and anaphase progress. During cellularization, the regions of spectrin concentration appear to shift: spectrin increases near the growing furrow canal and concomitantly increases at the embryo surface. In the final phase of furrow growth, the shift in spectrin concentration is reversed: spectrin decreases near the furrow canal and concomitantly increases at the embryo surface. In gastrulae, spectrin accumulates near the embryo surface, especially at the forming amnioproctodeal invagination and cephalic furrow. During the germband elongation stage, the total amount of spectrin in the embryo increases significantly and becomes uniformly distributed at the plasma membrane of almost all cell types. The highest levels of spectrin are in the respiratory tract cells; the lowest levels are in parts of the forming gut. The spatial and temporal changes in spectrin localization suggest that this protein plays a role in stabilizing rather than initiating changes in structural organization in the embryo.  相似文献   

11.
In this study the influence of whole-body hyperthermia on the distribution of spectrin in murine lymphocytes isolated from various lymphoid tissues is examined. Lymphocytes normally vary in terms of the pattern of spectrin distribution within the cell. In certain populations of lymphocytes, spectrin is distributed into a dense submembranous aggregate that can be easily identified by immunofluorescence microscopy. In these lymphocytes, little or no spectrin is seen at the plasma membrane region in the rest of the cell. Other lymphocytes have no such cytoplasmic aggregates, and the protein is seen at the region of the plasma membrane. Following whole-body hyperthermia (40.5 degrees C for 90 min) there is a 100% increase in cells exhibiting polar spectrin aggregates in the spleen, while lymphocytes from the thymus show no alteration in the number of cells showing such aggregates. The increase in the percentage of splenic cells that express aggregated spectrin is a result of increases occurring in both T- and B-cell subsets. This increase gradually returns to control levels by 48 h post-heating. During recovery to control levels this phenomenon is resistant to additional changes when a second heat treatment is applied. The effects described above are not observed when the experiments are performed in vitro; therefore, it is likely that the in vivo heat-induced alteration in the splenic lymphocyte population reflects the physiological response of lymphocytes to stimuli during a natural fever. The role that spectrin may play in the modulation of lymphocyte membrane properties is discussed.  相似文献   

12.
CD2 is a T cell surface glycoprotein that participates in T cell adhesion and activation. These processes are dynamically interrelated, in that T cell activation regulates the strength of CD2-mediated T cell adhesion. The lateral redistribution of CD2 and its ligand CD58 (LFA-3) in T cell and target membranes, respectively, has also been shown to affect cellular adhesion strength. We have used the fluorescence photobleaching recovery technique to measure the lateral mobility of CD2 in plasma membranes of resting and activated Jurkat T leukemia cells. CD2-mediated T cell activation caused lateral immobilization of 90% of cell surface CD2 molecules. Depleting cells of cytoplasmic Ca2+, loading cells with dibutyric cAMP, and disrupting cellular microfilaments each partially reversed the effect of CD2-mediated activation on the lateral mobility of CD2. These intracellular mediators apparently influence the same signal transduction pathways, because the effects of the mediators on CD2 lateral mobility were not additive. In separate experiments, activation-associated cytoplasmic Ca2+ mobilization was found to require microfilament integrity and to be negatively regulated by cAMP. By directly or indirectly controlling CD2 lateral diffusion and cell surface distribution, cytoplasmic Ca2+ mobilization may have an important regulatory role in CD2 mediated T cell adhesion.  相似文献   

13.
Spectrin-like proteins are found in a wide variety of non-erythroid cells where they generally occur in the cell cortex near the plasma membrane. To determine the intracellular distribution of alpha-spectrin (alpha-fodrin) in lymphocytes, we have developed an immunoperoxidase method to localize this protein at the ultrastructural level. Of considerable interest, particularly with regard to our efforts to determine the function of spectrin in this cell type, was the finding that its subcellular localization and its relationship with the plasma membrane can vary dramatically. Based on its position in the cell, alpha-spectrin can occur in two forms in lymphocytes: one that associates closely with the plasma membrane and another that occurs at some distance from the cell periphery, either as a single large aggregate or as several smaller ones. The single large aggregate of spectrin is a stable feature in a number of lymphocyte cell lines and hybrids which were used to examine its ultrastructural characteristics. A previously undescribed cellular structure, consisting of a meshwork of spectrin filaments and membranous vesicles, was identified in these cells. This structure could be induced to dissipate in response to membrane perturbants (e.g., hyperthermia and phorbol esters, known effectors of lymphocyte function and differentiation) and the patterns resulting from the redistribution of spectrin were a reflection of those observed routinely in lymphocytes in situ. The correlation between naturally occurring spectrin localization patterns and those seen after membrane perturbation suggested the possibility that spectrin distribution is indicative of particular maturation stages or functional states in lymphocytes. The implications of these findings with regard to the role of spectrin in lymphocyte function are discussed.  相似文献   

14.
The presence of spectrin was demonstrated in chick osteoclasts by Western blotting and light and electron microscopic immunolocalization. Additionally, screening of a chick osteoclast cDNA library revealed the presence of α-spectrin. Light microscope level immunocytochemical staining of osteoclasts in situ revealed spectrin staining throughout the cytoplasm with heavier staining found at the marrow-facing cell margin and around the nuclei. Confocal microscopy of isolated osteoclasts plated onto a glass substrate showed that spectrin encircled the organelle-rich cell center. Nuclei and cytoplasmic inclusions were also stained and the plasma membrane was stained in a nonuniform, patchy distribution corresponding to regions of apparent membrane ruffling. Ultracytochemical localization showed spectrin to be found at the plasma membrane and distributed throughout the cytoplasm with especially intense staining of the nuclear membrane and filaments within the nuclear compartment. J. Cell. Biochem. 71:204–215, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Previous studies have shown that cis unsaturated free fatty acids (uFFAs) are able to cause alterations in the normal distribution pattern of certain cytoskeletal proteins in lymphocytes, including tubulin, actin, alpha-actinin, and myosin. The cytoskeletal protein spectrin naturally possesses a marked heterogeneity of distribution among resting T and B lymphocytes isolated from all murine lymphoid organs. In some cells, spectrin is observed in a ring-like staining pattern at the periphery of the cell, reflecting a likely association with the cell membrane; in other cells, spectrin is found within the cytoplasm as a large single aggregate or in several smaller aggregates. Addition of uFFA to freshly isolated murine lymphocytes causes disruption in the latter pattern of spectrin organization. Following short-term incubation (15 min) of tissue-derived lymphocytes (from spleen, thymus, and lymph node) and 1 microgram/mL uFFA (oleic [18:1 cis], linoleic [18:2 cis, cis], arachidonic [20:4], or elaidic [18:1 trans] acid) there is a loss of cytoplasmic aggregates of spectrin and a concomitant increase in cells in which spectrin is diffusely distributed. This effect is not seen when two saturated FFAs (sFFAs) were used. When using DO11.10 cells, a T-cell hybridoma in which nearly all cells constitutively express a cytoplasmic aggregate of spectrin, a similar effect was observed, but greater concentrations (10-20 micrograms/mL) of FFA were needed to obtain the same effect. Addition of calcium to the incubation buffer substantially blocks spectrin reorganization. In several disease states, serum levels of FFA are observed to be excessively high; our data support the hypothesis that cytoskeletal reorganization in lymphocytes may be related to the altered immune function frequently observed in these conditions.  相似文献   

16.
Aspectrin-based skeleton uniformly underlies and supports the plasma membrane of the resting platelet, but remodels and centralizes in the activated platelet. alpha-Adducin, a phosphoprotein that forms a ternary complex with F-actin and spectrin, is dephosphorylated and mostly bound to spectrin in the membrane skeleton of the resting platelet at sites where actin filaments attach to the ends of spectrin molecules. Platelets activated through protease-activated receptor 1, FcgammaRIIA, or by treatment with PMA phosphorylate adducin at Ser726. Phosphoadducin releases from the membrane skeleton concomitant with its dissociation from spectrin and actin. Inhibition of PKC blunts adducin phosphorylation and release from spectrin and actin, preventing the centralization of spectrin that normally follows cell activation. We conclude that adducin targets actin filament ends to spectrin to complete the assembly of the resting membrane skeleton. Dissociation of phosphoadducin releases spectrin from actin, facilitating centralization of spectrin, and leads to the exposure of barbed actin filament ends that may then participate in converting the resting platelet's disc shape into its active form.  相似文献   

17.
Spectrin repeat sequences are among the more common repeat elements identified in proteins, typically occurring in large structural proteins. Examples of spectrin repeat-containing proteins include dystrophin, alpha-actinin and spectrin itself--all proteins with well-demonstrated roles of establishing and maintaining cell structure. Over the past decade, it has become clear that, although these proteins display a cytoplasmic and plasma membrane distribution, several are also found both at the nuclear envelope, and within the intranuclear space. In this review, we provide an overview of recent work regarding various spectrin repeat-containing structural proteins in the nucleus. As well, we hypothesize about the regulation of their nuclear localization and possible nuclear functions based on domain architecture, known interacting proteins and evolutionary relationships. Given their large size, and their potential for interacting with multiple proteins and with chromatin, spectrin repeat-containing proteins represent strong candidates for important organizational proteins within the nucleus. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).  相似文献   

18.
The plasma membranes of the cells of the superficial layer of the eye lens and the lens fibres are in close intercellular contact, leaving an intermembrane space of approximately 20 nm or less throughout their entire length. This plasma membrane is underlaid by a filamentous, cytoplasmic web containing actin, proteins of the spectrin and band 4.1 families, alpha-actinin and vinculin. Using immunofluorescence microscopy and immunoblotting of gel electrophoretically separated proteins, we show that plakoglobin, the plaque protein common to desmosomal and nondesmosomal adhering junctions, is present in lens cells and is also a component of the subplasmalemmal coat of these cells. Plakoglobin also exists in the extended regions of intercellular contacts between cultured lenticular cells where it often colocalizes with vinculin but does not occur in other vinculin-rich plasma membrane regions such as the focal adhesions at the ventral cell surface. Plakoglobin associated with plasma membrane regions can also be identified in various other adhesive cultured cells, but it is not detected in cells and tissues that do not establish firm intercellular junctions such as erythrocytes, platelets, cultured myeloma cells and smooth muscle tissue. We conclude that plakoglobin occurs, at least in lens cells, throughout the entire subplasmalemmal coat, coexisting in this situation not only with vinculin but also with spectrin and 4.1 protein(s). This colocalization infers the presence of a distinct, complex type of membrane-skeleton assembly involving the actin filament-associated junctional plaque elements plakoglobin and vinculin together with actin-associated proteins of the spectrin and band 4.1 protein families.  相似文献   

19.
Spectrin, the major cytoskeletal protein in erythrocytes, is localized on the inner membrane surface in association with membrane-spanning glycoproteins and with intramembrane particles. The presence of a specific, high-affinity protein binding site for spectrin on the cytoplasmic surface of the membrane has been established by measurement of reassociation of spectrin with spectrin-depleted inside-out vesicles. A 72,000 Mr proteolytic fragment of this attachment protein has been purified, which bound to spectrin in solution and competed for reassociation of spectrin with vesicles. A 215,000 Mr polypeptide has been identified as the precursor of the spectrin-binding fragment. The membrane attachment protein for spectrin was named ankyrin, and has been purified and characterized. Ankyrin has been demonstrated to be tightly associated in detergent extracts of vesicles with band 3, a major membrane-spanning polypeptide, and to bind directly to a proteolytic fragment derived from the cytoplasmic domain of band 3. Ankyrin is thus an example of a protein that directly links a cytoplasmic structural protein to an integral membrane protein. The organization of the erythrocyte membrane has implications for more complex cell types since immunoreactive forms of ankyrin distinct from myosin or filamin have been detected by radioimmunoassay in a variety of cells and tissues. Indirect immunofluorescent staining of cultured cells reveals immunoreactive forms of ankyrin in a cytoplasmic meshwork and in a punctate distribution over nuclei. The staining changes dramatically during mitosis, with concentration of stain at the spindle poles in metaphase and intense staining of the cleavage furrow during cytokinesis.  相似文献   

20.
A recent study from our laboratory on the sea urchin egg suggested that spectrin was not solely restricted to the plasma membrane, but instead had a more widespread distribution on the surface of a variety of membranous inclusions. (E. M. Bonder et al., 1989, Dev. Biol. 134, 327-341). In this report we extend our initial findings and provide experimental and ultrastructural evidence for the presence of spectrin on three distinct classes of cytoplasmic vesicles. Immunoblot analysis of membrane fractions prepared from egg homogenates establishes that spectrin coisolates with vesicle-enriched fractions, while indirect immunofluorescence microscopy on cryosections of centrifugally stratified eggs demonstrates that spectrin specifically associates with cortical granules, acidic vesicles, and yolk platelets in vivo. Immunogold ultrastructural localization of spectrin on cortices isolated from eggs and early embryos details the striking distribution of spectrin on the cytoplasmic surface of the plasma membrane and the membranes of cortical granules, acidic vesicles, and yolk platelets, while quantitative studies show that relatively equivalent amounts of spectrin are present on the different membrane surfaces both before and after fertilization. These data, in combination with the localization of numerous spectrin crosslinks between actin filaments in surface microvilli, suggest that spectrin plays a pivotal role in structuring the cortical membrane-cytoskeletal complex of the egg and the embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号