首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Autocrine release of TGF-beta by portal fibroblasts regulates cell growth   总被引:2,自引:0,他引:2  
Wells RG  Kruglov E  Dranoff JA 《FEBS letters》2004,559(1-3):107-110
Portal fibroblasts (PF) are a newly isolated population of fibrogenic cells in the liver postulated to play a significant role in early biliary fibrosis. Because transforming growth factor-beta (TGF)-beta is a key growth factor in fibrosis, we characterized the response of PF to TGF-beta. We demonstrate that PF produce significant amounts of TGF-beta2 and, unlike activated hepatic stellate cells (HSC), express all three TGF-beta receptors and are growth inhibited by TGF-beta1 and TGF-beta2. Fibroblast growth factor (FGF)-2, but not platelet derived growth factor (PDGF), causes PF proliferation. These data suggest a mechanism whereby HSC eclipse PF as the dominant myofibroblast population in biliary fibrosis.  相似文献   

3.
Connective tissue growth factor (CTGF), a potent profibrotic mediator, acts downstream and in concert with transforming growth factor (TGF)-beta to drive fibrogenesis. Significant upregulation of CTGF has been reported in fibrogenic diseases, including idiopathic pulmonary fibrosis (IPF), and is partly responsible for associated excessive fibroblast proliferation and extracellular matrix deposition, but no effective therapy exists for averting such fibrogeneic events. Simvastatin has reported putative antifibrotic actions in renal fibroblasts; this study explores such actions on human IPF-derived and normal lung fibroblasts and examines associated driving mechanisms. Simvastatin reduces basal CTGF gene and protein expression in all fibroblast lines, overriding TGF-beta induction through inhibition of the cholesterol synthesis pathway. Signaling pathways driving simvastatin's effects on CTGF/TGF-beta interaction were evaluated using transient reporter transfection of a CTGF promoter construct. Inhibition of CTGF promoter activity by simvastatin was most marked at 10 muM concentration, reducing activity by 76.2 and 51.8% over TGF-beta-stimulated cultures in IPF and normal fibroblasts, respectively. We also show that geranylgeranylpyrophosphate (GGPP), but not farnesylpyrophosphate, induces CTGF promoter activity following simvastatin inhibition by 55.3 and 31.1% over GGPP-negative cultures in IMR90 and IPF-derived fibroblasts, respectively, implicating small GTPase Rho involvement rather than Ras in these effects. Indeed, the specific Rho inhibitor C3 exotoxin significantly (P < 0.05) suppressed TGF-beta-induced CTGF promoter activity in transfected lung fibroblasts, a finding further supported by transfection of dominant-negative and constitutively active RhoA constructs, thus demonstrating that simvastatin through a Rho signaling mechanism in lung fibroblasts can modulate CTGF expression and interaction with TGF-beta.  相似文献   

4.
5.
During the repair phase of wound healing, fibroblasts migrate to the site of injury where they proliferate and synthesize constituents of the extracellular matrix of connective tissue. Their activity is regulated by mediators originating from cells of the blood clotting and inflammatory stage such as platelet-derived growth factor, epidermal growth factor, transforming growth factor-beta and other cytokines. This communication shows that chemotactic migration of normal dermal fibroblasts is elicited by epidermal growth factor in vitro and that platelet-derived growth factor and transforming growth factor-beta can down-regulate this activity. This suggests that in vivo these growth factors are part of an intricate network which connects and coordinates proliferation, protein synthesis and chemotactic migration of fibroblasts.  相似文献   

6.
Chronic hypoxia is implicated in lung fibrosis, which is characterized by enhanced deposition of extracellular matrix (ECM) molecules. Transforming growth factor-beta (TGF-beta) plays a key role in fibroblast homeostasis and is involved in disease states characterized by excessive fibrosis, such as pulmonary fibrosis. In this study, we investigated if hypoxia modulates the effects of TGF-beta on the expression of gelatinases: matrix metalloproteinase (MMP)-2 and MMP-9, interstitial collagenases: MMP-1 and MMP-13, tissue inhibitors of MMP (TIMP), collagen type I and interleukin-6 (IL-6). Primary human lung fibroblasts, established from tissue biopsies, were cultivated under normoxia or hypoxia in the presence of TGF-beta1, TGF-beta2 or TGF-beta3. Gelatinases were assessed by gelatin zymography and collagenases, TIMP, collagen type I and IL-6 by ELISA. Under normoxia fibroblasts secreted MMP-2, collagenases, TIMP, collagen type I and IL-6. TGF-betas significantly decreased MMP-1 and increased TIMP-1, IL-6 and collagen type I. Hypoxia significantly enhanced MMP-2, and collagenases. Compared to normoxia, the combination of TGF-beta and hypoxia reduced MMP-1, and further amplified the level of TIMP, IL-6, and collagen type I. Thus, in human lung fibroblasts hypoxia significantly increases the TGF-betas-induced secretion of collagen type I and may be associated to the accumulation of ECM observed in lung fibrosis.  相似文献   

7.
BMP7 signaling in renal development and disease   总被引:2,自引:0,他引:2  
Fibrosis, and in particular tubulointerstitial fibrosis, is a common feature of almost all chronic renal diseases. Over the past several years, significant progress has been made in defining the underlying mechanisms of tubulointerstitial fibrosis. In a variety of mouse models, expression of transforming growth factor-beta is a primary causative factor which leads to increased numbers of myofibroblasts, collagen deposition and loss of tubular epithelia. More recently, another member of the transforming growth factor-beta superfamily, BMP7, was shown to counteract transforming growth factor-beta-mediated fibrosis. The activities of these secreted factors are regulated, in part, by extracellular ligand binding proteins which can enhance or suppress receptor ligand interactions.  相似文献   

8.
To better understand the role of disrupted transforming growth factor beta (TGFbeta) signaling in fibrosis, we have selectively expressed a kinase-deficient human type II TGFbeta receptor (TbetaRIIDeltak) in fibroblasts of transgenic mice, using a lineage-specific expression cassette subcloned from the pro-alpha2(I) collagen gene. Surprisingly, despite previous studies that characterized TbetaRIIDeltak as a dominant negative inhibitor of TGFbeta signaling, adult mice expressing this construct demonstrated TGFbeta overactivity and developed dermal and pulmonary fibrosis. Compared with wild type cells, transgenic fibroblasts proliferated more rapidly, produced more extracellular matrix, and showed increased expression of key markers of TGFbeta activation, including plasminogen activator inhibitor-1, connective tissue growth factor, Smad3, Smad4, and Smad7. Smad2/3 phosphorylation was increased in transgenic fibroblasts. Overall, the gene expression profile of explanted transgenic fibroblasts using cDNA microarrays was very similar to that of littermate wild type cells treated with recombinant TGFbeta1. Despite basal up-regulation of TGFbeta signaling pathways, transgenic fibroblasts were relatively refractory to further stimulation with TGFbeta1. Thus, responsiveness of endogenous genes to TGFbeta was reduced, and TGFbeta-regulated promoter-reporter constructs transiently transfected into transgenic fibroblasts showed little activation by recombinant TGFbeta1. Responsiveness was partially restored by overexpression of wild type type II TGFbeta receptors. Activation of MAPK pathways by recombinant TGFbeta1 appeared to be less perturbed than Smad-dependent signaling. Our results show that expression of TbetaRIIDeltak selectively in fibroblasts leads to paradoxical ligand-dependent activation of downstream signaling pathways and causes skin and lung fibrosis. As well as confirming the potential for nonsignaling receptors to regulate TGFbeta activity, these findings support a direct role for perturbed TGFbeta signaling in fibrosis and provide a novel genetically determined animal model of fibrotic disease.  相似文献   

9.
Airway remodeling describes the structural changes that occur in the asthmatic airway that include airway smooth muscle hyperplasia, increases in vascularity due to angiogenesis, and thickening of the basement membrane. Our aim in this study was to examine the effect of transforming growth factor-beta on the release of connective tissue growth factor and vascular endothelial growth factor from human airway smooth muscle cells derived from asthmatic and nonasthmatic patients. In addition we studied the immunohistochemical localization of these cytokines in the extracellular matrix after stimulating bronchial rings with transforming growth factor-beta. Connective tissue growth factor and vascular endothelial growth factor were released from both cell types and colocalized in the surrounding extracellular matrix. Prostaglandin E2 inhibited the increase in connective tissue growth factor mRNA but augmented the release of vascular endothelial growth factor. Matrix metalloproteinase-2 decreased the amount of connective tissue growth factor and vascular endothelial growth factor, but not fibronectin deposited in the extracellular matrix. This report provides the first evidence that connective tissue growth factor may anchor vascular endothelial growth factor to the extracellular matrix and that this deposition is decreased by matrix metalloproteinase-2 and prostaglandin E2. This relationship has the potential to contribute to the changes that constitute airway remodeling, therefore providing a novel focus for therapeutic intervention in asthma.  相似文献   

10.
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1–mediated epithelial–mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-β–induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial–mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial–mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1–tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-β–activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor–like repeats. Together, these data identify that aberrant bidirectional epithelial–mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.  相似文献   

11.
12.
Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis.  相似文献   

13.
Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.  相似文献   

14.
Metabolism of the extracellular matrix (ECM) is a complex process that becomes disregulated in disease states characterized by chronic inflammation of joints, as is seen in rheumatoid arthritis or fibrosis of the lung. The participation of certain cytokines in this process is generally accepted (transforming growth factor-beta induces fibrosis), while the roles of other cytokines are less clear. Oncostatin M (OSM) is a member of the interleukin-6/leukaemia inhibitory factor (or gp130) cytokine family, and its participation in inflammation and the regulation of ECM metabolism is supported by a number of activities identified in vitro, including regulation of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1. Local overexpression of transforming growth factor-beta has been shown to be fibrogenic in mouse lung, whereas local OSM overexpression via intra-articular administration has been shown to induce a pannus-like inflammatory response in the synovium of mouse knee joints. Here we examine the effects of OSM in the context of those of transforming growth factor-beta using an established adenovirus vector that expresses mOSM (AdmOSM). We administered the virus intra-nasally into Balb/C mice to achieve high expression of OSM in the lung, and examined the effects at various time points. AdmOSM resulted in a vigorous inflammatory response by day 7 which was characterized by an elevation of neutrophil and mononuclear cell numbers and a marked increase in collagen deposition. These data support the use of such systems to study the ECM in vivo, and indicate a potential role for OSM in inflammatory responses that can modulate steady-state ECM deposition in Balb/C mice.  相似文献   

15.
Transforming growth factor-beta, a peptide growth factor, is known to be a multifunctional regulator of cellular activity. The effect of this growth factor on extracellular matrix formation is well established, but its effects on elastin, a critical component of lung, skin, and blood vessels are unknown. In the present study, by use of an Enzyme-Linked Immunoassay method, we found that transforming growth factor-beta strongly increased elastin production in cultured porcine aortic smooth muscle cells. In a dosage-dependent study, 1.0-10.0 ng/ml transforming growth factor-beta promoted elastin production 2-3 fold. In a time-dependent study, at least an 8 h pre-treatment with 10.0 ng/ml transforming growth factor-beta was required for sustained increases in elastin production. The effects of transforming growth factor-beta on cultured aortic smooth muscle cells suggest that this cytokine may be an important mediator of elastin formation during atherosclerosis and hypertension.  相似文献   

16.
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

17.
Transforming growth factor-beta 1 plays a key role in the pathogenesis of pulmonary fibrosis, mediating extracellular matrix (ECM) gene expression through a series of intracellular signaling molecules, including Smad2 and Smad3. We show that Smad3 null mice (knockout (KO)) develop progressive age-related increases in the size of alveolar spaces, associated with high spontaneous presence of matrix metalloproteinases (MMP-9 and MMP-12) in the lung. Moreover, transient overexpression of active TGF-beta 1 in lungs, using adenoviral vector-mediated gene transfer, resulted in progressive pulmonary fibrosis in wild-type mice, whereas no fibrosis was seen in the lungs of Smad3 KO mice up to 28 days. Significantly higher levels of matrix components (procollagen 3A1, connective tissue growth factor) and antiproteinases (plasminogen activator inhibitor-1, tissue inhibitor of metalloproteinase-1) were detected in wild-type lungs 4 days after TGF-beta 1 administration, while no such changes were seen in KO lungs. These data suggest a pivotal role of the Smad3 pathway in ECM metabolism. Basal activity of the pathway is required to maintain alveolar integrity and ECM homeostasis, but excessive signaling through the pathway results in fibrosis characterized by inhibited degradation and enhanced ECM deposition. The Smad3 pathway is involved in pathogenic mechanisms mediating tissue destruction (lack of repair) and fibrogenesis (excessive repair).  相似文献   

18.
Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation.Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0–10 ng/ml transforming growth factor (TGF)β1. mRNA expression was analyzed by quantitative real-time PCR.New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGFβ1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers α smooth muscle actin and type I collagen.The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) has multiple functions including increasing extracellular matrix deposition in fibrosis. It functions through a complex family of cell surface receptors that mediate downstream signaling. We report here that a transmembrane heparan sulfate proteoglycan, syndecan-2 (S2), can regulate TGF-beta signaling. S2 protein increased in the renal interstitium in diabetes and regulated TGF-beta-mediated increased matrix deposition in vitro. Transfection of renal papillary fibroblasts with S2 or a S2 construct that has a truncated cytoplasmic domain (S2DeltaS) promoted TGF-beta binding and S2 core protein ectodomain directly bound TGF-beta. Transfection with S2 increased the amounts of type I and type II TGF-beta receptors (TbetaRI and TbetaRII), whereas S2DeltaS was much less effective. In contrast, S2DeltaS dramatically increased the level of type III TGF-beta receptor (TbetaRIII), betaglycan, whereas S2 resulted in a decrease. Syndecan-2 specifically co-immunoprecipitated with betaglycan but not with TbetaRI or TbetaRII. This is a novel mechanism of control of TGF-beta action that may be important in fibrosis.  相似文献   

20.
Cardiac fibrosis is a pathophysiological process characterized by excessive deposition of extracellular matrix. We developed a cardiac hypertrophy model using transverse aortic constriction (TAC) to uncover mechanisms relevant to excessive deposition of extracellular matrix in mouse myocardial cells. TAC caused upregulation of Tripartite motif protein 72 (TRIM72), a tripartite motif-containing protein that is critical for proliferation and migration. Importantly, in vivo silencing of TRIM72 reversed TAC-induced cardiac fibrosis, as indicated by markedly increased left ventricular systolic pressure and decreased left ventricular end-diastolic pressure. TRIM72 knockdown also attenuated deposition of fibrosis marker collagen type I and α-smooth muscle actin (α-SMA). In an in vitro study, TRIM72 was similarly upregulated in cardiac fibroblasts. Knockdown of TRIM72 markedly suppressed collagen type I and α-SMA expression and significantly decreased the proliferation and migration of cardiac fibroblasts. However, TRIM72 overexpression markedly increased collagen type I and α-SMA expression and increased the proliferation and migration of cardiac fibroblasts. Further study demonstrated that TRIM72 increased phosphorylated STAT3 in cardiac fibroblasts. TRIM72 knockdown in cardiac fibroblasts resulted in increased expression of Notch ligand Jagged-1 and its downstream gene and Notch-1 intracellular domain. Inhibition of Notch-1 abrogated sh-TRIM72-induced cardiac fibrosis. Together, our results support a novel role for TRIM72 in maintaining fibroblast-to-myofibroblast transition and suppressing fibroblast growth by regulating the STAT3/Notch-1 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号