首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
线粒体呼吸链与活性氧   总被引:9,自引:0,他引:9  
刘树森 《生命科学》2008,20(4):519-527
已知有氧真核生物细胞吸收的氧分子绝大部分都是在线粒体呼吸链末端细胞色素氧化酶上通过四步单电子还原生成水。但同时也有1%-2%的氧可在呼吸链中途接受单电子或双电子被部分还原生成超氧(O2·^-和过氧化氢(H2O2)作为呼吸作用的正常代谢产物。此种来源于线粒体呼吸链的O2·^-和H2O2不但在多种病理的氧化损伤中起关键作用,同样它们也是正常生理条件下对多种细胞过程具有基本调控意义的氧还信号。基于Chance实验室约自20世纪70到90年代的早期研究贡献以及20世纪90年代后其他各实验室的研究新进展,我们聚焦于下述四个相关问题的评述和讨论:(1)由于线粒体内膜面积及其含有的呼吸链复合体酶活力远远高出细胞中所有膜系数量和相关酶活力之总和,因而线粒体呼吸链产生的O2·^-和H2O2构成生物体内最大数量ROS的恒定来源;(2)线粒体呼吸链复合体III的Q循环中Qo位点中半醌自由基(UQH·)已明确是O2·^-的单电子来源;还原细胞色素C-P66^SHC是生成H2O2的双电子供体。虽然复合体I也是产生线粒体基质内O2·^-的主要来源,但由于其确切生成位点尚未明确,在invivo条件下能否产生大量O2·^-也尚有争议;(3)线粒体呼吸链产生O2·^-后的分配和跨膜转移涉及其生理病理作用机制和作用靶点等复杂而重要的问题,直到目前尚未意见一致。“质子和O2·^-循环双回路解偶联模型”整合了目前提出的几种假说的联系点,指出H^+和O2·^-相互作用生成HO2·及其跨膜很可能是这一复杂问题的中心环节,并与O2·^-对“脂肪酸shuttling model”或O2·^-对“UCPS激活”模型形成了内在的联系;(4)线粒体呼吸形成的△P(△ψ和△pH)能直接控制呼吸链的ROS生成,并以非线性(非欧姆)相关方式通过影响Q循环中的Qo半醌的氧还态和寿命来调节O2·^-生成的急速?  相似文献   

2.
This perspective article highlights the growing evidence placing mitochondria and mitochondrial function at the center of cancer as an age‐related disease. The discussion starts from the mitochondrial free radical hypothesis that predicts the involvement of endogenous mitochondrial reactive oxygen species (ROS) in cancer development and summarizes studies demonstrating the impact of the modulation of ROS levels on cancer development and metastasis. Cancer is fundamentally a complex interplay of cell growth, division, metastasis and death‐ processes connected to mitochondria through energy metabolism. Based on this evidence, therapeutics focused on mitochondrial function and mitochondrial ROS production are an attractive approach to modulating the progression of metastatic cancer and the general improvement of human health span.  相似文献   

3.
Mitochondria are the main source of reactive oxygen species (ROS). The aim of this work was to verify the ROS generation in situ in HeLa cells exposed to prooxidants and antioxidants (menadione, tert-butyl hydroperoxide, antimycin A, vitamin E, N-acetyl-l-cysteine, and butylated hydroxytoluene) using the ROS-sensitive probes 6-carboxy-2,7-dichlorodihydrofluorescein diacetate di-acetomethyl ester (DCDHF) and dihydrofluorescein diacetate (DHF). Mitochondria were counterstained with the potential-sensitive probe tetramethylrhodamine methyl ester perchlorate (TMRM). Both DCDHF and DHF were able to detect the presence of ROS in mitochondria, though with distinct morphological features. DCDHF fluorescence was invariably blurred, smudged, and spread over the cytoplasm surrounding the major mitochondrial clusters. On the contrary, DHF fluorescence was sharp and delineated thin filaments which corresponded in all details to TMRM-stained mitochondria. These data suggest that DCDHF does not reach the mitochondrial matrix but is oxidized by ROS released by mitochondria in the cytosol. On the other hand, DHF enters mitochondria and reacts with ROS released in the matrix. Cytosolic (DCDHF+) ROS but not matrix (DHF+) ROS, were significantly decreased by vitamin E. N-acetyl-l-cysteine was effective in reducing DCDHF and DHF photooxidation in the medium, but was unable to reduce intracellular ROS. ROS generation was accompanied by partial mitochondrial depolarization.  相似文献   

4.
Pretreatment of tissues with potassium channel openers (KCO’s) has been observed to be cytoprotective in a broad variety of insults. This phenomenon has been proposed to be intimately linked to activation of mitochondrial potassium channels which apparently modulate the mitochondrial production of reactive oxygen species (ROS). This critical review summarizes literature findings about the mitochondrial production of ROS, the action of KCO’s on mitochondrial ROS production and the putative link to the cytoprotective action of these drugs.  相似文献   

5.
Although it has been known for decades that patients with type 2 diabetes mellitus (DM) are more susceptible to severe tuberculosis (TB) infection, the underlying immunological mechanisms remain unclear. Resistin, a protein produced by immune cells in humans, causes insulin resistance and has been implicated in inhibiting reactive oxygen species (ROS) production in leukocytes. Recent studies suggested that IL-1β production in patients with Mycobacteria tuberculosis infection correlates with inflammasome activation which may be regulated by ROS production in the immune cells. By investigating the level of resistin in different patient groups, we found that serum resistin levels were significantly higher in severe TB and DM-only groups when compared with mild TB cases and healthy controls. Moreover, elevation of serum resistin correlated with impairment of ROS production of neutrophils in patients with both DM and TB. In human macrophages, exogenous resistin inhibits the production of ROS which are important in the mycobacterium-induced inflammasome activation. Moreover, macrophages with defective ROS production had poor IL-1β production and ineffective control of mycobacteria growth. Our results suggest that increased resistin in severe TB and DM patients may suppress the mycobacterium-induced inflammasome activation through inhibiting ROS production by leukocytes.  相似文献   

6.
In the present study, the possible involvement of reactive oxygen species (ROS) in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis of Bombyx mori prothoracic glands (PGs) was investigated. Results showed that PTTH treatment resulted in a rapidly transient increase in the intracellular ROS concentration, as measured using 2′,7′-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant, N-acetylcysteine (NAC), abolished PTTH-induced increase in fluorescence. Furthermore, PTTH-induced ROS production was partially inhibited by the NAD(P)H oxidase inhibitor, apocynin, indicating that NAD(P)H oxidase is one of the sources for PTTH-stimulated ROS production. Four mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenylene iodonium (DPI)) significantly attenuated ROS production induced by PTTH. These data suggest that the activity of complexes I and III in the electron transport chain and the mitochondrial inner membrane potential (ΔΨ) contribute to PTTH-stimulated ROS production. In addition, PTTH-stimulated ecdysteroidogenesis was greatly inhibited by treatment with either NAC or mitochondrial inhibitors (rotenone, antimycin A, FCCP, and DPI), but not with apocynin. These results indicate that mitochondria-derived, but not membrane NAD(P)H oxidase-mediated ROS signaling, is involved in PTTH-stimulated ecdysteroidogenesis of PGs in B. mori.  相似文献   

7.
Reactive oxygen species (ROS) are generally small, short-lived and highly reactive molecules, initially thought to be a pathological role in the cell. A growing amount of evidence in recent years argues for ROS functioning as a signaling intermediate to facilitate cellular adaptation in response to pathophysiological stress through the regulation of autophagy. Autophagy is an essential cellular process that plays a crucial role in recycling cellular components and damaged organelles to eliminate sources of ROS in response to various stress conditions. A large number of studies have shown that DNA damage response (DDR) transducer ataxia-telangiectasia mutated (ATM) protein can also be activated by ROS, and its downstream signaling pathway is involved in autophagy regulation. This review aims at providing novel insight into the regulatory mechanism of ATM activated by ROS and its molecular basis for inducing autophagy, and revealing a new function that ATM can not only maintain genome homeostasis in the nucleus, but also as a ROS sensor trigger autophagy to maintain cellular homeostasis in the cytoplasm.  相似文献   

8.
Mitochondrial reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In particular, high levels of mitochondrial ROS in hypoxic cells regulate many angiogenesis-related diseases, including cancer and ischemic disorders. Here we report a new angiogenesis inhibitor, YCG063, which suppressed mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library with an ArrayScan HCS reader. YCG063 suppressed mitochondrial ROS generation under a hypoxic condition in a dose-dependent manner, leading to the inhibition of in vitro angiogenic tube formation and chemoinvasion as well as in vivo angiogenesis of the chorioallantoic membrane (CAM) at non-toxic doses. In addition, YCG063 decreased the expression levels of HIF-1α and its target gene, VEGF. Collectively, a new antiangiogenic small molecule that suppresses mitochondrial ROS was identified. This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions.  相似文献   

9.
【目的】从基因组水平探讨生物冶金微生物——喜温嗜酸硫杆菌(Acidithiobacillus caldus)的活性氧类物质(Reactive oxygen species,ROS)防护机制。【方法】采用罗氏454 GS FLX测序平台对喜温嗜酸硫杆菌SM-1进行全基因组测序,利用NCBI非冗余蛋白数据库、Uniport蛋白数据库对全基因组序列进行功能注释,并采用基因组百科全书数据库(KEGG)进行基因组代谢途径重构,通过比较基因组学方法分析SM-1基因组中参与ROS防护相关的基因及可能的分子机制。【结果】SM-1细胞内的酶促抗氧化系统可用于清除细胞内产生的ROS物质,而非酶促抗氧化系统可用于维持细胞内的还原性内环境;细胞内的DNA损伤修复系统可用于修复DNA的氧化损伤从而保持个体遗传物质的稳定性。此外,SM-1基因组中大量的转座元件可能会增加基因组的可塑性以适应极端冶金环境。【结论】SM-1基因组序列的获得为从整体水平揭示喜温嗜酸硫杆菌适应生物冶金环境ROS氧化损伤的防护机制提供了帮助,对于SM-1的ROS防护机制的认知也为进一步通过遗传改造、提升其在高浓度重金属离子冶金环境中的抗性、提高冶金效率提供了理论指导。  相似文献   

10.
Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.  相似文献   

11.
The capacity of yeast cells to produce reactive oxygen species (ROS), both as a response to manipulation of mitochondrial functions and to growth conditions, was estimated and compared with the viability of the cells. The chronological ageing of yeast cells (growth to late-stationary phase) was accompanied by increased ROS accumulation and a significantly higher loss of viability in the mutants with impaired mitochondrial functions than in the parental strain. Under these conditions, the ectopic expression of mammalian Bcl-x(L), which is an anti-apoptotic protein, allowed cells to survive longer in stationary phase. The protective effect of Bcl-x(L) was more prominent in respiratory-competent cells that contained defects in mitochondrial ADP/ATP translocation, suggesting a model for Bcl-x(L) regulation of chronological ageing at the mitochondria. Yeast can also be triggered into apoptosis-like cell death, at conditions leading to the depletion of the intramitochondrial ATP pool, as a consequence of the parallel inhibition of mitochondrial respiration and ADP/ATP translocation. If respiratory-deficient (rho(0)) cells were used, no correlation between the numbers of ROS-producing cells and the viability loss in the population was observed, indicating that ROS production may be an accompanying event. The protective effect of Bcl-x(L) against death of these cells suggests a mitochondrial mechanism which is different from the antioxidant activity of Bcl-x(L).  相似文献   

12.
The generation of Reactive Oxygen Species (ROS) as by-products in mitochondria Electron Transport Chain (ETC) has long been admitted as the cost of aerobic energy metabolism with oxidative damages as consequence. The purpose of this methodological review is to present some of the most widespread methods of ROS generation and to underline the limitations as well as some problems, identified with some experiments as examples, in the interpretation of such results. There is now no doubt that besides their pejorative role, ROS are involved in a variety of cellular processes for the continuous adaptation of the cell to its environment. Because ROS metabolism is a complex area (low production, instability of species, efficient antioxidant defense system, several places of production…) bias, variances and limitations in ROS measurements must be recognized in order to avoid artefactual conclusions, and especially to improve our understanding of physiological and pathophysiological mechanisms of such phenomenon.  相似文献   

13.
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.  相似文献   

14.
Helicobacter pylori (H. pylori) induces reactive oxygen species (ROS) production that contribute to pathogenesis of a variety of H. pylori-related gastric diseases, as shown in animal and human studies. Helicobacter pylori infection is also associated with variety of systemic extragastric diseases in which H. pylori-related ROS production might also be involved in the pathogenesis of these systemic conditions. We proposed that Hp-related ROS may play a crucial role in the pathophysiology of Hp-related systemic diseases including Alzheimer’s disease, multiple sclerosis, glaucoma and other relative neurodegenerative diseases, thereby suggesting introduction of relative ROS scavengers as therapeutic strategies against these diseases which are among the leading causes of disability and are associated with a large public health global burden. Moreover, we postulated that H. pylori-related ROS might also be involved in the pathogenesis of extragastric common malignancies, thereby suggesting that H. pylori eradication might inhibit the development or delay the progression of aforementioned diseases. However, large-scale future studies are warranted to elucidate the proposed pathophysiological mechanisms, including H. pylori-related ROS, involved in H. pylori-associated systemic and malignant conditions.  相似文献   

15.
Photosystem II (PSII) is a multisubunit protein complex in cyanobacteria, algae and plants that use light energy for oxidation of water and reduction of plastoquinone. The conversion of excitation energy absorbed by chlorophylls into the energy of separated charges and subsequent water-plastoquinone oxidoreductase activity are inadvertently coupled with the formation of reactive oxygen species (ROS). Singlet oxygen is generated by the excitation energy transfer from triplet chlorophyll formed by the intersystem crossing from singlet chlorophyll and the charge recombination of separated charges in the PSII antenna complex and reaction center of PSII, respectively. Apart to the energy transfer, the electron transport associated with the reduction of plastoquinone and the oxidation of water is linked to the formation of superoxide anion radical, hydrogen peroxide and hydroxyl radical. To protect PSII pigments, proteins and lipids against the oxidative damage, PSII evolved a highly efficient antioxidant defense system comprising either a non-enzymatic (prenyllipids such as carotenoids and prenylquinols) or an enzymatic (superoxide dismutase and catalase) scavengers. It is pointed out here that both the formation and the scavenging of ROS are controlled by the energy level and the redox potential of the excitation energy transfer and the electron transport carries, respectively. The review is focused on the mechanistic aspects of ROS production and scavenging by PSII. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

16.
Seo BB  Marella M  Yagi T  Matsuno-Yagi A 《FEBS letters》2006,580(26):6105-6108
Using rat dopaminergic and human neuroblastoma cell lines transduced with the NDI1 gene encoding the internal NADH dehydrogenase (Ndi1) from Saccharomyces cerevisiae, we investigated reactive oxygen species (ROS) generation caused by complex I inhibition. Incubation of non-transduced cells with rotenone elicited oxidative damage to mitochondrial DNA as well as lipid peroxidation. In contrast, oxidative stress was significantly decreased when the cells were transduced with NDI1. Furthermore, mitochondria from the NDI1-transduced cells showed a suppressed rate of ROS formation by the complex I inhibitors. We conclude that the Ndi1 enzyme is able to suppress ROS overproduction from defective complex I.  相似文献   

17.
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we generated and analyzed SMS1-null mice. SMS1-null mice exhibited moderate neonatal lethality, reduced body weight, and loss of fat tissues mass, suggesting that they might have metabolic abnormality. Indeed, analysis on glucose metabolism revealed that they showed severe deficiencies in insulin secretion. Isolated mutant islets exhibited severely impaired ability to release insulin, dependent on glucose stimuli. Further analysis indicated that mitochondria in mutant islet cells cannot up-regulate ATP production in response to glucose. We also observed additional mitochondrial abnormalities, such as hyperpolarized membrane potential and increased levels of reactive oxygen species (ROS) in mutant islets. Finally, when SMS1-null mice were treated with the anti-oxidant N-acetyl cysteine, we observed partial recovery of insulin secretion, indicating that ROS overproduction underlies pancreatic β-cell dysfunction in SMS1-null mice. Altogether, our data suggest that SMS1 is important for controlling ROS generation, and that SMS1 is required for normal mitochondrial function and insulin secretion in pancreatic β-cells.  相似文献   

18.
Cyclosporine A (CsA) use is associated with several side effects, the most important of which is nephrotoxicity that includes, as we previously showed, tubular injury and interstitial fibrosis. Recently, many researchers have been interested in minimizing these effects by pharmacological interventions. To do this, we tested whether the administration of a red wine polyphenol, Provinol (PV), prevents the development of CsA-induced nephrotoxicity. Rats were treated for 21 days and divided into four groups: control; group treated with PV (40 mg/kg/day by oral administration in tap water); group treated with CsA (15 mg/kg/day by subcutaneous injection); group treated with CsA plus PV. CsA produced a significant increase of systolic blood pressure; it did not affect urinary output, but caused a significant decrease in creatinine clearance. These side effects were associated with an increase in conjugated dienes, which are lipid peroxidation products, inducible NO-synthase (iNOS), and nuclear factor (NF)-kB, which are involved in antioxidant damage. However, PV prevented these negative effects through a protective mechanism that involved reduction of both oxidative stress and increased iNOS and NF-kB expression induced by CsA. These results provide a pharmacological basis for the beneficial effects of plant-derived polyphenols against CsA-induced renal damage associated with CsA.  相似文献   

19.
Mammalian peroxisomes and reactive oxygen species   总被引:7,自引:5,他引:7  
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor- on peroxisome function and peroxisome proliferator activated receptor-. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5–/– knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.  相似文献   

20.
Mitochondrial dysfunction and oxidative stress play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). This study aimed to elucidate the mechanism(s) responsible for mitochondrial dysfunction in nonalcoholic fatty liver. Fatty liver was induced in rats with a choline-deficient (CD) diet for 30 days. We examined the effect of CD diet on various parameters related to mitochondrial function such as complex I activity, oxygen consumption, reactive oxygen species (ROS) generation and cardiolipin content and oxidation. The activity of complex I was reduced by 35% in mitochondria isolated from CD livers compared with the controls. These changes in complex I activity were associated with parallel changes in state 3 respiration. Hydrogen peroxide (H2O2) generation was significantly increased in mitochondria isolated from CD livers. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, decreased by 38% as function of CD diet, while there was a significantly increase in the level of peroxidized cardiolipin. The lower complex I activity in mitochondria from CD livers could be completely restored to the level of control livers by exogenously added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids nor by peroxidized cardiolipin. It is concluded that CD diet causes mitochondrial complex I dysfunction which can be attributed to ROS-induced cardiolipin oxidation. These findings provide new insights into the alterations underlying mitochondrial dysfunction in NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号