共查询到20条相似文献,搜索用时 0 毫秒
1.
Rungnapa Warotayanont Baruch Frenkel Yan Zhou 《Biochemical and biophysical research communications》2009,387(3):558-563
We previously showed that one of the amelogenin splicing isoforms, Leucine-rich amelogenin peptide (LRAP), induced osteogenic differentiation of mouse embryonic stem cells; however, the signaling pathway(s) activated by LRAP remained unknown. Here, we demonstrated that the canonical Wnt/β-catenin signaling is activated upon LRAP treatment, as evidenced by elevated β-catenin level and increased Wnt reporter gene activity. Furthermore, a specific Wnt inhibitor sFRP-1 completely blocks the LRAP-mediated Wnt signaling. However, exogenous recombinant Wnt3a alone was less effective at osteogenic induction of mouse ES cells in comparison to LRAP. Using a quantitative real-time PCR array, we discovered that LRAP treatment up-regulated the expression of Wnt agonists and down-regulated the expression of Wnt antagonists. We conclude that LRAP activates the canonical Wnt signaling pathway to induce osteogenic differentiation of mouse ES cells through the concerted regulation of Wnt agonists and antagonists. 相似文献
2.
3.
Zhang K Ye C Zhou Q Zheng R Lv X Chen Y Hu Z Guo H Zhang Z Wang Y Tan R Liu Y 《Cell biochemistry and function》2007,25(6):767-774
The approximately 14 kb mRNA of the polycystic kidney disease gene PKD1 encodes a large ( approximately 460 kDa) protein, termed polycystin-1 (PC-1), that is responsible for autosomal dominant polycystic kidney disease (ADPKD). The unique organization of its multiple adhesive domains (16 Ig-like domains/PKD domains) suggests that it may play an important role in cell-cell/cell-matrix interactions. Here we demonstrated that PKD1 promoted cell-cell and cell-matrix interactions in cancer cells, indicating that PC-1 is involved in the cell adhesion process. Furthermore in this study, we showed that PKD1 inhibited cancer cells migration and invasion. And we also showed that PC-1 regulated these processes in a process that may be at least partially through the Wnt pathway. Collectively, our data suggest that PKD1 may act as a novel member of the tumor suppressor family of genes. 相似文献
4.
The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression patterns induced by Wnt3a treatment in two hMSC lines: hMSC-LRP5T253 and hMSC-LRP5T244 cells carrying known mutations of Wnt co-receptor LRP5 (T253I or T244M) that either enhances or represses canonical Wnt signaling, respectively. Wnt3a treatment of hMSC activated not only canonical Wnt signaling, but also the non-canonical Wnt/JNK pathway through upregulation of several non-canonical Wnt components e.g. naked cuticle 1 homolog (NKD1) and WNT11. Activation of the non-canonical Wnt/JNK pathway by anisomycin enhanced osteoblast differentiation whereas its inhibition by SP600125 enhanced adipocyte differentiation of hMSC. In conclusion, canonical and non-canonical Wnt signaling cooperate in determining MSC differentiation fate. 相似文献
5.
The objective of this study was to clarify the relationship between the effect and associated mechanisms of lithium chloride on neural stem cells (NSCs) and the Wnt signaling pathway. The expression of key molecules proteins related to the Wnt signaling pathway in the proliferation and differentiation of control NSCs and lithium chloride-treated NSCs was detected by Western blot analysis. Flow cytometry analysis was applied to study the cell cycle dynamics of control NSCs and NSCs treated with lithium chloride. The therapeutic concentrations of lithium chloride stimulated NSC proliferation. β-catenin expression gradually decreased, while Gsk-3β expression gradually increased (P?0.01). Furthermore, NSCs treated with lithium chloride showed significantly enhanced β-catenin expression and inhibited Gsk-3β expression in a dose-dependent manner. NSCs in the G0/G1-phases were activated with an increased therapeutic concentration of lithium chloride, while NSCs in the S-phase, as well as G2/M-phases, were arrested (P?0.01). These data confirm that the proliferation of NSCs is remarkably promoted through changes of cell dynamics after treatment with lithium chloride. Our results provide insight into the effects of lithium chloride in promoting the proliferation abilities of NSCs in vitro and preventing the cells from differentiating, which is potentially mediated by activation of the Wnt signaling pathway. 相似文献
6.
Kulkarni NH Halladay DL Miles RR Gilbert LM Frolik CA Galvin RJ Martin TJ Gillespie MT Onyia JE 《Journal of cellular biochemistry》2005,95(6):1178-1190
The Wnt signaling pathway has recently been demonstrated to play an important role in bone cell function. In previous studies using DNA microarray analyses, we observed a change in some of the molecular components of the canonical Wnt pathway namely, frizzled-1 (FZD-1) and axil, in response to continuous parathyroid hormone (PTH) treatment in rats. In the present study, we further explored other components of the Wnt signaling pathway in rat distal metaphyseal bone in vivo, and rat osteoblastic osteosarcoma cells (UMR 106) in culture. Several Wnt pathway components, including low-density lipoprotein-receptor-related protein 5 (LRP5), LRP6, FZD-1, Dickkopf-1 (Dkk-1), and Kremen-1 (KRM-1), were expressed in bone in vivo and in osteoblasts in vitro. Continuous exposure to PTH (1-38) both in vivo and in vitro upregulated the mRNA expression of LRP6 and FZD-1 and decreased LRP5 and Dkk-1. These effects in UMR 106 cells were associated with an increase in beta-catenin as measured by Western blots and resulted in functional activation (three to six-fold) of a downstream Wnt responsive TBE6-luciferase (TCF/LEF-binding element) reporter gene. Activation of the TBE6-luciferase reporter gene by PTH (1-38) in UMR 106 cells was inhibited by the protein kinase A (PKA) inhibitor, H89. Activation was mimicked by PTH (1-31), PTH-related protein (1-34), and forskolin, but both PTH (3-34) and (7-34) had no effect. These findings suggest that the effect of PTH on the canonical Wnt signaling pathway occurs at least in part via the cAMP-PKA pathway through the differential regulation of the receptor complex proteins (FZD-1/LRP5 or LRP6) and the antagonist (Dkk-1). Taken together, these results reveal a possible role for the Wnt signaling pathway in PTH actions in bone. 相似文献
7.
MFN2 silencing promotes neural differentiation of embryonic stem cells via the Akt signaling pathway
Siqi Yi Chenghao Cui Xiaotian Huang Xiaohui Yin Yang Li Jinhua Wen Qingxian Luan 《Journal of cellular physiology》2020,235(2):1051-1064
Mitofusin 2 (MFN2) is a regulatory protein participating in mitochondria dynamics, cell proliferation, death, differentiation, and so on. This study aims at revealing the functional role of MFN2 in the pluripotency maintenance and primitive differetiation of embryonic stem cell (ESCs). A dox inducible silencing and routine overexpressing approach was used to downregulate and upregulate MFN2 expression, respectively. We have compared the morphology, cell proliferation, and expression level of pluripotent genes in various groups. We also used directed differentiation methods to test the differentiation capacity of various groups. The Akt signaling pathway was explored by the western blot assay. MFN2 upregulation in ESCs exhibited a typical cell morphology and similar cell proliferation, but decreased pluripotent gene markers. In addition, MFN2 overexpression inhibited ESCs differentiation into the mesendoderm, while MFN2 silencing ESCs exhibited a normal cell morphology, slower cell proliferation and elevated pluripotency markers. For differentiation, MFN2 silencing ESCs exhibited enhanced three germs' differentiation ability. Moreover, the protein levels of phosphorylated Akt308 and Akt473 decreased in MFN2 silenced ESCs, and recovered in the neural differentiation process. When treated with the Akt inhibitor, the neural differentiation capacity of the MFN2 silenced ESCs can reverse to a normal level. Taken together, the data indicated that the appropriate level of MFN2 expression is essential for pluripotency and differentiation capacity in ESCs. The increased neural differentiation ability by MFN2 silencing is strongly related to the Akt signaling pathway. 相似文献
8.
Yuan Wang Jing-Chuan Sun Hai-Bo Wang Xi-Ming Xu Qing-Jie Kong Ying-Jie Wang Bing Zheng Guo-Dong Shi Jian-Gang Shi 《Journal of cellular biochemistry》2019,120(5):8185-8194
Osteogenic differentiation refers to the process of bone formation and remodeling, which is controlled by complex molecular mechanisms. Activin A receptor type I (ACVR1) is reported to be associated with osteogenic differentiation. However, the underlying molecular mechanism remains elusive. Therefore, this study evaluates the function of ACVR1 in osteogenic differentiation through the Wnt signaling pathway. The expression of osteocalcin (Oc) and osterix together with osteogenic differentiation and mineralization was examined in ACVR1-knockout (KO) mouse. Furthermore, the Wnt signaling pathway was inhibited in bone marrow stromal cells (BMSCs) of mice to explore the role of the Wnt signaling pathway in osteogenic differentiation by means of alkaline phosphatase (ALP) activity detection and evaluation of mineralized nodules and calcium content. Subsequently, the effect of ACVR1 on the Wnt signaling pathway was assessed by determining the expression of ACVR1, β-catenin, glycogen synthase kinase 3 β (GSK3β), dickkopf-related protein 1 (DKK1), and frizzled class receptor 1 (FZD1). Both their effects on osteogenic differentiation were further evaluated by determination of Oc, osterix, and Runx2 expression. AVCR1 KO mice exhibited increased Oc and osterix expression and promoted bone resorption and formation. ACVR1-knockout was observed to activate the Wnt signaling pathway with an increase of β-catenin and reductions in GSK3β, DKK1, and FZD1. With the inhibited Wnt signaling pathway expression of Oc, osterix, and Runx2 was decreased, and ALP activity, mineralized nodule, and calcium content in cellular matrix were decreased as well, indicating that inactivation of the Wnt signaling pathway reduced the differentiation of BMSCs into osteoclasts. These findings indicate that ACVR1-knockout promotes osteogenic differentiation by activating the Wnt signaling pathway in mice. 相似文献
9.
A regulatory role of Wnt signaling pathway in the hematopoietic differentiation of murine embryonic stem cells 总被引:1,自引:0,他引:1
Feng Z Srivastava AS Mishra R Carrier E 《Biochemical and biophysical research communications》2004,324(4):1333-1339
One of the most important issues in stem cell research is to understand the regulatory mechanisms responsible for their differentiation. An extensive understanding of mechanism underlying the process of differentiation is crucial in order to prompt stem cells to perform a particular function after differentiation. To elucidate the molecular mechanisms responsible for the hematopoietic differentiation of embryonic stem cells (ESCs), we investigated murine ES cells for the presence of hematopoietic lineage markers as well as Wnt signaling pathway during treatments with different cytokines alone or in combination with another. Here we report that Wnt/beta-catenin signaling is down-regulated in hematopoietic differentiation of murine ES cells. We also found that differentiation induced by the interleukin-3, interleukin-6, and erythropoietin combinations resulted in high expression of CD3e, CD11b, CD45R/B220, Ly-6G, and TER-119 in differentiated ES cells. A high expression of beta-catenin was observed in two undifferentiated ES cell lines. Gene and protein expression analysis revealed that the members downstream of Wnt in this signaling pathway including beta-catenin, GSK-3beta, Axin, and TCF4 were significantly down-regulated as ES cells differentiated into hematopoietic progenitors. Our results show that the Wnt/beta-catenin signaling pathway plays a role in the hematopoietic differentiation of murine ESCs and also may support beta-catenin as a crucial factor in the maintenance of ES cells in their undifferentiated state. 相似文献
10.
11.
Huaji Jiang Jialiang Zhong Wenjun Li Jianghui Dong Cory J Xian YungKang Shen Lufeng Yao Qiang Wu Liping Wang 《Journal of cellular and molecular medicine》2021,25(23):10825
Osteoporosis is characterized by increased bone fragility, and the drugs used at present to treat osteoporosis can cause adverse reactions. Gentiopicroside (GEN), a class of natural compounds with numerous biological activities such as anti‐resorptive properties and protective effects against bone loss. Therefore, the aim of this work was to explore the effect of GEN on bone mesenchymal stem cells (BMSCs) osteogenesis for a potential osteoporosis therapy. In vitro, BMSCs were exposed to GEN at different doses for 2 weeks, whereas in vivo, ovariectomized osteoporosis was established in mice and the therapeutic effect of GEN was evaluated for 3 months. Our results in vitro showed that GEN promoted the activity of alkaline phosphatase, increased the calcified nodules in BMSCs and up‐regulated the osteogenic factors (Runx2, OSX, OCN, OPN and BMP2). In vivo, GEN promoted the expression of Runx2, OCN and BMP2, increased the level of osteogenic parameters, and accelerated the osteogenesis of BMSCs by activating the BMP pathway and Wnt/β‐catenin pathway, effect that was inhibited using the BMP inhibitor Noggin and Wnt/β‐catenin inhibitor DKK1. Silencing the β‐catenin gene and BMP2 gene blocked the osteogenic differentiation induced by GEN in BMSCs. This block was also observed when only β‐catenin was silenced, although the knockout of BMP2 did not affect β‐catenin expression induced by GEN. Therefore, GEN promotes BMSC osteogenesis by regulating β‐catenin‐BMP signalling, providing a novel strategy in the treatment of osteoporosis. 相似文献
12.
Shu Ma Dan-Dan Wang Cheng-Yuan Ma Yan-Dong Zhang 《Journal of cellular biochemistry》2019,120(9):15429-15442
Ankylosing spondylitis (AS) refers to a type of arthritis manifested with chronic inflammation of spine joints. microRNAs (MiRNAs) have been identified as new therapeutic targets for inflammatory diseases. In this study, we evaluated the influence of microRNA-96 (miR-96) on osteoblast differentiation together with bone formation in a murine model of AS. The speculated relationship that miR-96 could bind to sclerostin (SOST) was verified by dual luciferase reporter assay. After successful model establishment, the mice with AS and osteoblasts isolated from mice with AS were treated with mimics or inhibitors of miR-96, or DKK-1 (a Wnt signaling inhibitor). The effects of gain- or loss-of-function of miR-96 on the inflammatory cytokine release (IL-6, IL-10, and TNF-α), alkaline phosphatase (ALP) activity, calcium nodule formation, along with the viability of osteoblasts were determined. It was observed that miR-96 might target and regulate SOST. Besides, miR-96 was expressed at a high level in AS mice while SOST expressed at a low level. TOP/FOP-Flash luciferase reporter assay confirmed that miR-96 activated the Wnt signaling pathway. Moreover, AS mice overexpressing miR-96 exhibited increased contents of IL-6, IL-10 and TNF-α, ALP activity, calcium nodule numbers, and viability of osteoblasts. In contrast, inhibition of miR-96 resulted in suppression of the osteoblast differentiation and bone formation. In conclusion, the study implicates that overexpressing miR-96 could improve osteoblast differentiation and bone formation in AS mice via Wnt signaling pathway activation, highlighting a potential new target for AS treatment. 相似文献
13.
14.
《Saudi Journal of Biological Sciences》2022,29(4):2526-2531
The Wnt signaling pathway plays a critical role in almost all aspects of skeletal development and homeostasis. Many studies suggest the importance of this signaling pathway in connection with bone metabolism through many skeletal disorders caused by mutations in Wnt signaling genes. The knowledge gained through targeting this pathway is of great value for skeletal health and diseases, for example of increased bone mass in the case of osteoporosis. Our objective was to focus on the detection of single nucleotide polymorphisms and investigate the associations between possible polymorphisms in selected genes that are part of those signaling pathways and parameters of bones in hens of ISA Brown hybrids (bone breaking strength, length, width, and bone mass). Different regions of the GPR177, ESR1 and RUNX2 genes were studied, using PCR and sequencing, in a total of forty-eight samples for each marker. Thirteen polymorphisms have been discovered in selected regions of studied genes, whereas these polymorphisms were only within the GPR177 gene. Eight of these polymorphisms were synonymous and five were in the intron. The tested regions of the ESR1 and RUNX2 genes were monomorphic. The only statistically significant difference was found within the GPR177 gene (exon 2) and the bone length parameter, in the c.443 + 86G > A polymorphism. However, this polymorphism was found in the intron, and no other one was found within the selected regions to show associations with the observed bone parameters. 相似文献
15.
Paul Faustin Seke Etet Lorella Vecchio Patrice Bogne Kamga Elias Nchiwan Nukenine Mauro Krampera Armel Hervé Nwabo Kamdje 《生物化学与生物物理学报:癌评论》2013
Wnts are a family of evolutionary-conserved secreted signaling molecules critically involved in a variety of developmental processes and in cell fate determination. A growing body of evidence suggests that Wnt signaling plays a crucial role in the influence of bone marrow stromal microenvironment on the balance between hematopoietic stem cell self-renewal and differentiation. Emerging clinical and experimental evidence also indicates Wnt signaling involvement in the disruption of the latter balance in hematologic malignancies, where the stromal microenvironment favors the homing of cancer cells to the bone marrow, as well as leukemia stem cell development and chemoresistance. In the present review, we summarize and discuss the role of the canonical Wnt signaling pathway in normal hematopoiesis and hematologic malignancies, with regard to recent findings on the stromal microenvironment involvement in these process and diseases. 相似文献
16.
Sylvain Marcellini Juan Pablo Henriquez Ariana Bertin 《BioEssays : news and reviews in molecular, cellular and developmental biology》2012,34(11):953-962
Although many regulators of skeletogenesis have been functionally characterized, one current challenge is to integrate this information into regulatory networks. Here, we discuss how the canonical Wnt and Smad‐dependent BMP pathways interact together and play antagonistic or cooperative roles at different steps of osteogenesis, in the context of the developing vertebrate embryo. Early on, BMP signaling specifies multipotent mesenchymal cells into osteochondroprogenitors. In turn, the function of Wnt signaling is to drive these osteochondroprogenitors towards an osteoblastic fate. Subsequently, both pathways promote osteoblast differentiation, albeit with notable mechanistic differences. In osteocytes, the ultimate stage of osteogenic differentiation, the Wnt and BMP pathways exert opposite effects on the control of bone resorption by osteoclasts. We describe how the dynamic molecular wiring of the canonical Wnt and Smad‐dependent BMP signaling into the skeletal cell genetic programme is critical for the generation of bone‐specific cell types during development. 相似文献
17.
18.
19.
Wnt信号通路参与外周免疫调节的研究进展 总被引:1,自引:0,他引:1
Wnt信号通路最初是由于其在动物胚胎发育和形态发生过程中的作用而引起了人们的注意。过去二十多年来,人们又发现Wnt通路参与干细胞的分化及多种疾病的发生,这使它成为研究的一个热点。近年来的研究表明,Wnt通路与免疫系统也有密切的联系,不仅参与各种免疫细胞的发育分化,还能调控外周免疫细胞的功能。该文就对Wnt信号通路在外周免疫系统中的研究进展作一综述。 相似文献