首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Morphogen gradients play a fundamental role in organ patterning and organ growth. Unlike their role in patterning, their function in regulating the growth and the size of organs is poorly understood. How and why do morphogen gradients exert their mitogenic effects to generate uniform proliferation in developing organs, and by what means can morphogens impinge on the final size of organs? The decapentaplegic (Dpp) gradient in the Drosophila wing imaginal disc has emerged as a suitable and established system to study organ growth. Here, we review models and recent findings that attempt to address how the Dpp morphogen contributes to uniform proliferation of cells, and how it may regulate the final size of wing discs.  相似文献   

2.
Quantitative data from the Drosophila wing imaginal disc reveals that the amplitude of the Decapentaplegic (Dpp) morphogen gradient increases continuously. It is an open question how cells can determine their relative position within a domain based on a continuously increasing gradient. Here we show that pre-steady state diffusion-based dispersal of morphogens results in a zone within the growing domain where the concentration remains constant over the patterning period. The position of the zone that is predicted based on quantitative data for the Dpp morphogen corresponds to where the Dpp-dependent gene expression boundaries of spalt (sal) and daughters against dpp (dad) emerge. The model also suggests that genes that are scaling and are expressed at lateral positions are either under the control of a different read-out mechanism or under the control of a different morphogen. The patterning mechanism explains the extraordinary robustness that is observed for variations in Dpp production, and offers an explanation for the dual role of Dpp in controlling patterning and growth. Pre-steady-state dynamics are pervasive in morphogen-controlled systems, thus making this a probable general mechanism for the scaled read-out of morphogen gradients in growing developmental systems.  相似文献   

3.
The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth.  相似文献   

4.
5.
6.
Morphogen gradients ensure the specification of different cell fates by dividing initially unpatterned cellular fields into distinct domains of gene expression. It is becoming clear that such gradients are not always simple concentration gradients of a single morphogen; however, the underlying mechanism of generating an activity gradient is poorly understood. Our data indicate that the relative contributions of two BMP ligands, Gbb and Dpp, to patterning the wing imaginal disc along its A/P axis, change as a function of distance from the ligand source. Gbb acts over a long distance to establish BMP target gene boundaries and a variety of cell fates throughout the wing disc, while Dpp functions at a shorter range. On its own, Dpp is not sufficient to mediate the low-threshold responses at the end points of the activity gradient, a function that Gbb fulfills. Given that both ligands signal through the Tkv type I receptor to activate the same downstream effector, Mad, the difference in their effective ranges must reflect an inherent difference in the ligands themselves, influencing how they interact with other molecules. The existence of related ligands with different functional ranges may represent a conserved mechanism used in different species to generate robust long range activity gradients.  相似文献   

7.
8.

Background  

Decapentaplegic (Dpp) is one of the best characterized morphogens, required for dorso-ventral patterning of the Drosophila embryo and for anterior-posterior (A/P) patterning of the wing imaginal disc. In the larval wing pouch, the Dpp target gene optomotor-blind (omb) is generally assumed to be expressed in a step function above a certain threshold of Dpp signaling activity.  相似文献   

9.
BACKGROUND: Secreted signaling proteins of the Wingless (Wg)/Wnt, Hedgehog and bone morphogenetic protein (BMP)/Decapentaplegic (Dpp) families function as morphogens to control growth and pattern formation during development. Although these proteins have been shown to act directly on distant cells in the developing limbs of the fruit fly Drosophila, little is known about how ligand gradients form in vivo. Wg protein is found in vesicles in Wg-responsive cells in the embryo and imaginal discs. It has been proposed that Wg may be transported by a vesicle-mediated mechanism. RESULTS: A novel method to visualize extracellular Wg protein was used to show that Wg forms an unstable gradient on the basolateral surface of the wing imaginal disc epithelium. Wg movement did not require internalization by dynamin-mediated endocytosis. Dynamin activity was, however, required for Wg secretion. By reversibly blocking Wg secretion, we found that Wg moves rapidly to form a long-range extracellular gradient. CONCLUSIONS: The Wg morphogen gradient forms by rapid movement of ligand through the extracellular space, and depends on continuous secretion and rapid turnover. Endocytosis is not required for Wg movement, but contributes to shaping the gradient by removing extracellular Wg. We propose that the extracellular Wg gradient forms by diffusion.  相似文献   

10.
Teleman AA  Cohen SM 《Cell》2000,103(6):971-980
The secreted signaling protein Dpp acts as a morphogen to pattern the anterior-posterior axis of the Drosophila wing. Dpp activity is required in all cells of the developing wing imaginal disc, but the ligand gradient that supports this activity has not been characterized. Here we make use of a biologically active form of Dpp tagged with GFP to examine the ligand gradient. Dpp-GFP forms an unstable extracellular gradient that spreads rapidly in the wing disc. The activity gradient visualized by MAD phosphorylation differs in shape from the ligand gradient. The pMAD gradient adjusted to compartment size when this was experimentally altered. These observations suggest that the Dpp activity gradient may be shaped at the level of receptor activation.  相似文献   

11.
In the wing imaginal disc of Drosophila melanogaster, the morphogen Dpp controls growth, probably in an instructive manner. Many models for growth control by Dpp have been proposed and have been extensively discussed elsewhere. In this review, we speculate on how instructive growth control could provide a link between Dpp signaling and cell growth and/or cell cycle progression and so implement morphogenetic growth control on the cellular and molecular levels.  相似文献   

12.
13.
In the vertebrates, the BMP/Smad1 and TGF-β/Smad2 signaling pathways execute antagonistic functions in different contexts of development. The differentiation of specific structures results from the balance between these two pathways. For example, the gastrula organizer/node of the vertebrates requires a region of low Smad1 and high Smad2 signaling. In Drosophila, Mad regulates tissue determination and growth in the wing, but the function of dSmad2 in wing patterning is largely unknown. In this study, we used an RNAi loss-of-function approach to investigate dSmad2 signaling during wing development. RNAi-mediated knockdown of dSmad2 caused formation of extra vein tissue, with phenotypes similar to those seen in Dpp/Mad gain-of-function. Clonal analyses revealed that the normal function of dSmad2 is to inhibit the response of wing intervein cells to the extracellular Dpp morphogen gradient that specifies vein formation, as measured by expression of the activated phospho-Mad protein. The effect of dSmad2 depletion in promoting vein differentiation was dependent on Medea, the co-factor shared by Mad and dSmad2. Furthermore, double RNAi experiments showed that Mad is epistatic to dSmad2. In other words, depletion of Smad2 had no effect in Mad-deficient wings. Our results demonstrate a novel role for dSmad2 in opposing Mad-mediated vein formation in the wing. We propose that the main function of dActivin/dSmad2 in Drosophila wing development is to antagonize Dpp/Mad signaling. Possible molecular mechanisms for the opposition between dSmad2 and Mad signaling are discussed.  相似文献   

14.
Decapentaplegic (Dpp), a Drosophila TGF beta/bone morphogenetic protein homolog, functions as a morphogen to specify cell fate along the anteroposterior axis of the wing. Dpp is a heparin-binding protein and Dpp signal transduction is potentiated by Dally, a cell-surface heparan sulfate proteoglycan, during assembly of several adult tissues. However, the molecular mechanism by which the Dpp morphogen gradient is established and maintained is poorly understood. We show evidence that Dally regulates both cellular responses to Dpp and the distribution of Dpp morphogen in tissues. In the developing wing, dally expression in the wing disc is controlled by the same molecular pathways that regulate expression of thick veins, which encodes a Dpp type I receptor. Elevated levels of Dally increase the sensitivity of cells to Dpp in a cell autonomous fashion. In addition, dally affects the shape of the Dpp ligand gradient as well as its activity gradient. We propose that Dally serves as a co-receptor for Dpp and contributes to shaping the Dpp morphogen gradient.  相似文献   

15.
Patterning of the developing limbs by the secreted signaling proteins Wingless, Hedgehog and Dpp takes place while the imaginal discs are growing rapidly. Cells born in regions of high ligand concentration may be displaced through growth to regions of lower ligand concentration. We have used a novel lineage-tagging method to address the reversibility of cell fate specification by morphogen gradients. We find that responses to Hedgehog and Dpp in the wing disc are readily reversible. In the leg, we find that cells readily adopt more distal fates, but do not normally shift from distal to proximal fate. However, they can do so if given a growth advantage. These results indicate that cell fate specification by morphogen gradients remains largely reversible while the imaginal discs grow. In other systems, where growth and patterning are uncoupled, nonreversible specification events or 'ratchet' effects may be of functional significance.  相似文献   

16.
Glypicans, a family of heparan sulfate proteoglycans attached to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor, play essential roles in morphogen signaling and distributions. A Drosophila glypican, Dally, regulates the gradient formation of Decapentaplegic (Dpp) in the developing wing. To gain insights into the function of glypicans in morphogen signaling, we examined the activities of two mutant forms of Dally: a transmembrane form (TM-Dally) and a secreted form (Sec-Dally). Misexpression of tm-dally in the wing disc had a similar yet weaker effect in enhancing Dpp signaling compared to that of wild-type dally. In contrast, Sec-Dally shows a weak dominant negative activity on Dpp signal transduction. Furthermore, sec-dally expression led to patterning defects as well as a substantial overgrowth of tissues and animals through the expansion of the action range of Hh. These findings support the recently proposed model that secreted glypicans have opposing and/or distinct effects on morphogen signaling from the membrane-tethered forms.  相似文献   

17.
《Fly》2013,7(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their abilty to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imparative to the two central themes in gradient formation; active transport facilitating long-range signalling, and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane mediated processes of re-secretion, degradation, and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

18.
Decapentaplegic (Dpp), a Drosophila homologue of bone morphogenetic proteins, acts as a morphogen to regulate patterning along the anterior-posterior axis of the developing wing. Previous studies showed that Dally, a heparan sulfate proteoglycan, regulates both the distribution of Dpp morphogen and cellular responses to Dpp. However, the molecular mechanism by which Dally affects the Dpp morphogen gradient remains to be elucidated. Here, we characterized activity, stability, and gradient formation of a truncated form of Dpp (DppΔN), which lacks a short domain at the N-terminus essential for its interaction with Dally. DppΔN shows the same signaling activity and protein stability as wild-type Dpp in vitro but has a shorter half-life in vivo, suggesting that Dally stabilizes Dpp in the extracellular matrix. Furthermore, genetic interaction experiments revealed that Dally antagonizes the effect of Thickveins (Tkv; a Dpp type I receptor) on Dpp signaling. Given that Tkv can downregulate Dpp signaling by receptor-mediated endocytosis of Dpp, the ability of dally to antagonize tkv suggests that Dally inhibits this process. Based on these observations, we propose a model in which Dally regulates Dpp distribution and signaling by disrupting receptor-mediated internalization and degradation of the Dpp-receptor complex.  相似文献   

19.
In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian-Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues.  相似文献   

20.
Many developmental systems are organised via the action of graded distributions of morphogens. In the Drosophila wing disc, for example, recent experimental evidence has shown that graded expression of the morphogen Dpp controls cell proliferation and hence disc growth. Our goal is to explore a simple model for regulation of wing growth via the Dpp gradient: we use a system of reaction-diffusion equations to model the dynamics of Dpp and its receptor Tkv, with advection arising as a result of the flow generated by cell proliferation. We analyse the model both numerically and analytically, showing that uniform domain growth across the disc produces an exponentially growing wing disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号