首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined composition and relative roles of deubiquitylating proteins associated with the 26S proteasome in mammalian cells. Three deubiquitylating activities were associated with the 26S proteasome: two from constituent subunits, Rpn11/S13 and Uch37, and one from a reversibly associated protein, Usp14. RNA interference (RNAi) of Rpn11/S13 inhibited cell growth, decreased cellular proteasome activity via disrupted 26S proteasome assembly, and inhibited cellular protein degradation. In contrast, RNAi of Uch37 or Usp14 had no detectable effect on cell growth, proteasome structure or proteolytic capacity, but accelerated cellular protein degradation. RNAi of both Uch37 and Usp14 also had no effect on proteasome structure or proteolytic capacity, but inhibited cellular protein degradation. Thus, proper proteasomal processing of ubiquitylated substrates requires Rpn11 plus either Uch37 or Usp14. Although the latter proteins feature redundant deubiquitylation functions, they also appear to exert noncatalyic effects on proteasome activity that are similar to but independent of one another. These results reveal unexpected functional relationships among multiple deubiquitylating proteins and suggest a model for mammalian 26S proteasome function whereby their concerted action governs proteasome function by linking deubiquitylation to substrate hydrolysis.  相似文献   

2.
Wang X  Chen CF  Baker PR  Chen PL  Kaiser P  Huang L 《Biochemistry》2007,46(11):3553-3565
The 26S proteasome is a multisubunit complex responsible for degradation of ubiquitinated substrates, which plays a critical role in regulating various biological processes. To fully understand the function and regulation of the proteasome complex, an important step is to elucidate its subunit composition and posttranslational modifications. Toward this goal, a new affinity purification strategy has been developed using a derivative of the HB tag for rapid isolation of the human 26S proteasome complex for subsequent proteomic analysis. The purification of the complex is achieved from stable 293 cell lines expressing a HB-tagged proteasome subunit and by high-affinity streptavidin binding with TEV cleavage elution. The complete composition of the 26S proteasome complex, including recently assigned new subunits, is identified by LC-MS/MS. In addition, all known proteasome activator proteins and components involved in the ubiquitin-proteasome degradation pathway are identified. Aside from the subunit composition, the N-terminal modification and phosphorylation of the proteasome subunits have been characterized. Twelve novel phosphorylation sites from eight subunits have been identified, and N-terminal modifications are determined for 25 subunits, 12 of which have not been previously reported in mammals. We also observe different N-terminal processing of subunit Rpn2, which results in identification of two different N-termini of the protein. This work presents the first comprehensive characterization of the human 26S proteasome complex by affinity purification and tandem mass spectrometry. The detailed proteomic profiling obtained here is significant to future studies aiming at a complete understanding of the structure-function relationship of the human 26S proteasome complex.  相似文献   

3.
Heat shock protein 90 (hsp90) and the proteasome activator PA28 stimulate major histocompatibility complex (MHC) class I antigen processing. It is unknown whether hsp90 influences the proteasome activity to produce T cell epitopes, although association of PA28 with the 20 S proteasome stimulates the enzyme activity. Here, we show that hsp90 is essential in assembly of the 26 S proteasome and as a result, is involved in epitope production. Addition of recombinant hsp90alpha to cell lysate enhanced chymotrypsin-like activity of the 26 S proteasome in an ATP-dependent manner as determined by an in-gel hydrolysis assay. We successfully pulled down histidine-tagged hsp90alpha- and PA28alpha-induced, newly assembled 26 S proteasomes from the cell extracts for in vitro epitope production assay, and we found these structures to be sensitive to geldanamycin, an hsp90 inhibitor. We found a cleaved epitope unique to the proteasome pulled down by both hsp90alpha and PA28alpha, whereas two different epitopes were identified in the hsp90alpha- and PA28alpha-pulldowns, respectively. Processing of these respective peptides in vivo was enhanced faithfully by the protein combinations used for the proteasome pulldowns. Inhibition of hsp90 in vivo by geldanamycin partly disrupted the 26 S proteasome structure, consistent with down-regulated MHC class I expression. Our results indicate that hsp90 facilitates MHC class I antigen processing through epitope production in a complex of the 26 S proteasome.  相似文献   

4.
5.
Seong KM  Baek JH  Yu MH  Kim J 《FEBS letters》2007,581(13):2567-2573
The 26S proteasome, composed of the 20S core and 19S regulatory complexes, is important for the turnover of polyubiquitinated proteins. Each subunit of the complex plays a special role in proteolytic function, including substrate recruitment, deubiquitination, and structural contribution. To assess the function of some non-essential subunits in the 26S proteasome, we isolated the 26S proteasome from deletion strains of RPN13 and RPN14 using TAP affinity purification. The stability of Gcn4p and the accumulation of ubiquitinated Gcn4p were significantly increased, but the affinity in the recognition of proteasome was decreased. In addition, the subcomplexes of the isolated 26S proteasomes from deletion mutants were less stable than that of the wild type. Taken together, our findings indicate that Rpn13p and Rpn14p are involved in the efficient recognition of 26S proteasome for the proteolysis of ubiquitinated Gcn4p.  相似文献   

6.
We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Deltarpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Deltarpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Deltarpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Deltarpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome.  相似文献   

7.
26S蛋白酶体广泛分布于真核细胞中的胞质和胞核,主要是由20S核心复合物(coreparticle,CP)和19S调节复合物(regulatory particle,RP)组成,它负责细胞大多数蛋白质的降解,在几乎所有生命活动中具有关键的调控作用。26S蛋白酶体的组装是一个非常复杂且高度条理的过程,不同的分子伴侣,如PAC1-4、Ump1、p27、p28和s5b等,参与其中发挥识别及调节作用,以确保高效准确地完成蛋白酶体的组装。本文系统总结分析了20S核心复合物和19S调节复合物的组装过程及调控机制的最近研究进展。  相似文献   

8.
Peptides displayed on the cell surface by major histocompatibility class I molecules (MHC class I) are generated by proteolytic processing of protein-antigens in the cytoplasm. Initially, antigens are degraded by the 26 S proteasome, most probably following ubiquitination. However, it is unclear whether this proteolysis results in the generation of MHC class I ligands or if further processing is required. To investigate the role of the 26 S proteasome in antigen presentation, we analyzed the processing of an intact antigen by purified 26 S proteasome. A recombinant ornithine decarboxylase was produced harboring the H-2K(b)-restricted peptide epitope, derived from ovalbumin SIINFEKL (termed ODC-ova). Utilizing recombinant antizyme to target the antigen to the 26 S proteasome, we found that proteolysis of ODC-ova by the 26 S proteasome resulted in the generation of the K(b)-ligand. Mass spectrometry analysis indicated that in addition to SIINFEKL, the N-terminally extended ligand, HSIINFEKL, was also generated. Production of SIINFEKL was linear with time and directly proportional to the rate of ODC-ova degradation. The overall yield of SIINFEKL was approximately 5% of the amount of ODC-ova degraded. The addition of PA28, the 20 S, or the 20 S-PA28 complex to the 26 S proteasome did not significantly affect the yield of the antigenic peptide. These findings demonstrate that the 26 S proteasome can efficiently digest an intact physiological substrate and generate an authentic MHC class I-restricted epitope.  相似文献   

9.
The 26S proteasome degrades polyubiquitinated proteins by an energy-dependent mechanism. Here we define multiple roles for ATP in 26S proteasome function. ATP binding is necessary and sufficient for assembly of 26S proteasome from 20S proteasome and PA700/19S subcomplexes and for proteasome activation. Proteasome assembly and activation may require distinct ATP binding events. The 26S proteasome degrades nonubiquitylated, unstructured proteins without ATP hydrolysis, indicating that substrate translocation per se does not require the energy of hydrolysis. Nonubiquitylated folded proteins and certain polyubiquitylated folded proteins were refractory to proteolysis. The latter were deubiquitylated by an ATP-independent mechanism. Other folded as well as unstructured polyubiquitylated proteins required ATP hydrolysis for proteolysis and deubiquitylation. Thus, ATP hydrolysis is not used solely for substrate unfolding. These results indicate that 26S proteasome-catalyzed degradation of polyubiquitylated proteins involves mechanistic coupling of several processes and that such coupling imposes an energy requirement not apparent for any isolated process.  相似文献   

10.
Hsp90 has a diverse array of cellular roles including protein folding, stress response and signal transduction. Herein we report a novel function for Hsp90 in the ATP-dependent assembly of the 26S proteasome. Functional loss of Hsp90 using a temperature-sensitive mutant in yeast caused dissociation of the 26S proteasome. Conversely, these dissociated constituents reassembled in Hsp90-dependent fashion both in vivo and in vitro; the process required ATP-hydrolysis and was suppressed by the Hsp90 inhibitor geldanamycin. We also found genetic interactions between Hsp90 and several proteasomal Rpn (Regulatory particle non-ATPase subunit) genes, emphasizing the importance of Hsp90 to the integrity of the 26S proteasome. Our results indicate that Hsp90 interacts with the 26S proteasome and plays a principal role in the assembly and maintenance of the 26S proteasome.  相似文献   

11.
BACKGROUND: Anaphase-promoting complex (APC)/cyclosome and 26S proteasome are respectively required for polyubiquitination and degradation of mitotic cyclin and anaphase inhibitor Cut2 (Pds1/securin). In fission yeast, mutant cells defective in cyclosome and proteasome fail to complete mitosis and have hypercondensed chromosomes and a short spindle. A similar phenotype is seen in a temperature-sensitive strain cut8-563 at 36 degrees C, but the molecular basis for Cut8 function is little understood. RESULTS: At high temperature, the level of Cut8 greatly increases and it becomes essential to the progression of anaphase. In cut8 mutants, chromosome mis-segregation and aberrant spindle dynamics occur, but cytokinesis takes place with normal timing, leading to the cut phenotype. This is due to the fact that destruction of mitotic cyclin and Cut2 in the nucleus is dramatically delayed, though polyubiquitination of Cdc13 occurs in cut8 mutant. Cut8 is localized chiefly to the nucleus and nuclear periphery, a distribution highly similar to that of 26S proteasome. In cut8 mutant, however, 26S proteasome becomes mostly cytoplasmic, showing that Cut8 is needed for its proper localization. CONCLUSION: Cut8 is a novel evolutionarily conserved heat-inducible regulator. It facilitates anaphase-promoting proteolysis by recruiting 26S proteasome to a functionally efficient nuclear location.  相似文献   

12.
Partial degradation or regulated ubiquitin proteasome-dependent processing by the 26 S proteasome has been demonstrated, but the underlying molecular mechanisms and the prevalence of this phenomenon remain obscure. Here we show that the Gly-Ala repeat (GAr) sequence of EBNA1 affects processing of substrates via the ubiquitin-dependent degradation pathway in a substrate- and position-specific fashion. GAr-mediated increase in stability of proteins targeted for degradation via the 26 S proteasome was associated with a fraction of the substrates being partially processed and the release of the free GAr. The GAr did not cause a problem for the proteolytic activity of the proteasome, and its fusion to the N terminus of p53 resulted in an increase in the rate of degradation of the entire chimera. Interestingly the GAr had little effect on the stability of EBNA1 protein itself, and targeting EBNA1 for 26 S proteasome-dependent degradation led to its complete degradation. Taken together, our data suggest a model in which the GAr prevents degradation or promotes endoproteolytic processing of substrates targeted for the 26 S proteasome by interfering with the initiation step of substrate unfolding. These results will help to further understand the underlying mechanisms for partial proteasome-dependent degradation.  相似文献   

13.
Recruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48‐linked polyubiquitin chain. In contrast, modifications with the Lys63‐linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome‐independent cellular processes. Nevertheless, the ubiquitin chain‐type specificity for the proteasomal targeting is still poorly understood, especially in vivo. Using mass spectrometry, we found that Rsp5, a ubiquitin‐ligase in budding yeast, catalyzes the formation of Lys63‐linked ubiquitin chains in vitro. Interestingly, the 26S proteasome degraded well the Lys63‐linked ubiquitinated substrate in vitro. To examine whether Lys63‐linked ubiquitination serves in degradation in vivo, we investigated the ubiquitination of Mga2‐p120, a substrate of Rsp5. The polyubiquitinated p120 contained relatively high levels of Lys63‐linkages, and the Lys63‐linked chains were sufficient for the proteasome‐binding and subsequent p120‐processing. In addition, Lys63‐linked chains as well as Lys48‐linked chains were detected in the 26S proteasome‐bound polyubiquitinated proteins. These results raise the possibility that Lys63‐linked ubiquitin chain also serves as a targeting signal for the 26S proteaseome in vivo.  相似文献   

14.
Gaczynska M  Osmulski PA  Gao Y  Post MJ  Simons M 《Biochemistry》2003,42(29):8663-8670
Substrate-specific inhibition of the proteasome has been unachievable despite great interest in proteasome inhibitors as drugs. Recent studies demonstrated that PR39, a natural proline- and arginine-rich antibacterial peptide, stimulates angiogenesis and inhibits inflammatory responses by specifically blocking degradation of IkappaBalpha and HIF-1alpha by the proteasome. However, molecular events involved in the PR39-proteasome interaction have not been elucidated. Here we show that PR39 is a noncompetitive and reversible inhibitor of the proteasome function. This effect is achieved by a unique allosteric mechanism allowing for specific inhibition of degradation of selected proteins without affecting total proteasome-dependent proteolysis. Atomic force microscopy (AFM) studies demonstrate that 20S and 26S proteasomes treated with PR39 or its derivatives exhibit serious perturbations in their structure and their normal allosteric movements. These effects are universal for proteasomes from yeast to human. The shortest functional sequence derived from PR39 still showing the allosteric inhibitory effect consists of eleven NH(2)-terminal residues containing essential three NH(2)-terminal arginines. The noncompetitive and reversible in vitro action of PR39 and its truncated derivatives is matched by the ability of the peptides to induce angiogenesis in vivo. We postulate that PR39 changes conformational dynamics of the proteasomes by interactions with the noncatalytic subunit alpha7 in a way that prevents the enzyme from cleaving the substrates of unique structural constraints.  相似文献   

15.
The 26S proteasome is responsible for the controlled proteolysis of a vast number of proteins, including crucial cell cycle regulators. Accordingly, in Saccharomyces cerevisiae, 26S proteasome function is mandatory for cell cycle progression. In budding yeast, the 26S proteasome is assembled in the nucleus, where it is localized throughout the cell cycle. We report that upon cell entry into quiescence, proteasome subunits massively relocalize from the nucleus into motile cytoplasmic structures. We further demonstrate that these structures are proteasome cytoplasmic reservoirs that are rapidly mobilized upon exit from quiescence. Therefore, we have named these previously unknown structures proteasome storage granules (PSGs). Finally, we observe conserved formation and mobilization of these PSGs in the evolutionary distant yeast Schizosaccharomyces pombe. This conservation implies a broad significance for these proteasome reserves.  相似文献   

16.
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.Key words: proteasome, cell division, ubiquitin-dependent proteolysis, ubiquitin-independent proteolysis, stress responses  相似文献   

17.
The 26S proteasome degrades ubiquitinated proteins, and proteasomal degradation controls various cellular events. Here we report that the human 26S proteasome is ubiquitinated, by which the ubiquitin receptors Adrm1 and S5a, the ATPase subunit Rpt5, and the deubiquitinating enzyme Uch37 are ubiquitinated in situ by proteasome-associating ubiquitination enzymes. Ubiquitination of these subunits significantly impairs the 26S proteasome''s ability to bind, deubiquitinate, and degrade ubiquitinated proteins. Moreover, ubiquitination of the 26S proteasome can be antagonized by proteasome-residing deubiquitinating enzymes, by the binding of polyubiquitin chains, and by certain cellular stress, indicating that proteasome ubiquitination is dynamic and regulated in cells. We propose that in situ ubiquitination of the 26S proteasome regulates its activity, which could function to adjust proteasomal activity in response to the alteration of cellular ubiquitination levels.  相似文献   

18.
Chen C  Huang C  Chen S  Liang J  Lin W  Ke G  Zhang H  Wang B  Huang J  Han Z  Ma L  Huo K  Yang X  Yang P  He F  Tao T 《Proteomics》2008,8(3):508-520
Ubiquitin-dependent proteolysis is mediated by the proteasome. To understand the structure and function of the human 26S proteasome, we cloned complete ORFs of 32 human proteasome subunits and conducted a yeast two-hybrid analysis of their interactions with each other. We observed that there are 114 interacting-pairs in the human 26S proteasome. About 10% (11/114) of these interacting-pairs was confirmed by the GST-pull down analysis. Among these observed interacting subunits, 58% (66/114) are novel and the rest 42% (48/114) has been reported previously in human or in other species. We observed new interactions between the 19S regulatory particle and the beta-rings of the 20S catalytic particle and therefore proposed a modified model of the 26S proteasome.  相似文献   

19.
Trinucleotide repeat (TNR) expansion is the causative mutation for at least 17 inherited neurological diseases. An important question in the field is which proteins drive the expansion process. This study reports that the multi-functional protein Sem1 is a novel driver of TNR expansions in budding yeast. Mutants of SEM1 suppress up to 90% of expansions. Subsequent analysis showed that Sem1 facilitates expansions via its function in the 26S proteasome, a highly conserved multi-subunit complex with both proteolytic and non-proteolytic functions. The proteolytic function of the 26S proteasome is relevant to expansions, as mutation of additional proteasome components or treatment of yeast with a proteasome inhibitor suppressed CTG•CAG expansions. The 26S proteasome also drives expansions in human cells. In a human astrocytic cell line, siRNA-mediated knockdown of 26S proteasome subunits PSMC5 or PSMB3 reduced expansions. This expansion phenotype, both in yeast and human cells, is dependent on the proteolytic activity of the proteasome rather than a stress response owing to depletion of free ubiquitin. Thus, the 26S proteasome is a novel factor that drives expansions in both yeast and human cells by a mechanism involving protein degradation.  相似文献   

20.
The ubiquitin-proteasome pathway has a well-defined beginning and end. Target proteins are initially recognized by upstream components and tagged with polyubiquitin chains. The 26S proteasome then degrades these polyubiquitinated proteins. Until recently, it was not known what, if any, steps occurred between the initial polyubiquitination of target proteins and their final degradation. Several new papers investigating the function of the Cdc48-Ufd1-Npl4 complex indicate that there is indeed a middle to the ubiquitin-proteasome pathway. The Cdc48-Ufd1-Npl4 complex functions in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for processive degradation or even more specific processing. The elucidation of Cdc48, Ufd1 and Npl4 action not only provides long-sought functions for these specific proteins, but illuminates a poorly understood part of the ubiquitin-proteasome pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号