首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Th17细胞和Treg细胞是CD4+T细胞的新亚群,在分化发育、功能发挥的过程中受到Th1型、Th2型效应细胞以及自身分泌产生细胞因子的调节,参与自身免疫病、感染、肿瘤等疾病的发生发展。通过对Th17和Treg分化发育、和功能发挥过程中的关键调节因子进行阻断或加强,可以上调或下调Th17和Treg在疾病中的表达,以用于疾病的预防和诊治。  相似文献   

2.
Th17细胞在肺部感染免疫中的作用   总被引:3,自引:0,他引:3  
Th17细胞是近年来发现的一种新的效应T细胞亚群,在自身免疫性疾病和感染中发挥重要的作用,其分泌产生几种致炎细胞因子,包括新发现的细胞因子白细胞介素17。Th17产生的细胞因子与Th1、Th2不同并且与其相互对抗。Th17细胞很可能对防御胞外病原菌的感染及自身免疫性疾病产生影响。综述了Th17细胞产生的细胞因子及其在肺部感染免疫中的作用相关方面的进展。  相似文献   

3.
Guillain–Barré syndrome (GBS) is an immune-mediated acute inflammatory disorder in the peripheral nervous system (PNS) of humans characterized by inflammatory infiltration and damage to myelin and axon. Experimental autoimmune neuritis (EAN) is a useful animal model for GBS. Although GBS and EAN have been widely studied, the pathophysiological basis of GBS/EAN remains largely unknown. Immunocompetent cells together with cytokines produced by various cells contribute to the inflammatory process of EAN by acting as mediators or effectors. Both GBS and EAN have hitherto been attributed to T helper (Th)1 cells-mediated disorders, however, some changes in GBS and EAN could not be explained by the pathogenic role of Th1 cells and a disturbance of the Th1/Th2 balance, which has previously been considered to be important for the homeostatic maintenance of the immune responses and to explain the adaptive immunity and autoimmune diseases. The Th1/Th2 paradigm in autoimmune diseases has been greatly challenged in recent years, with the identification of a particular T cell subset Th17 cells. Studies on the associations between Th17 cells/cytokines and GBS/EAN are reviewed. But some of them occasionally yield conflicting results, indicating an intricate network of cytokines in immune response.  相似文献   

4.
Chronic fatigue syndrome (CFS) is characterized by immune dysfunctions including chronic immune activation, inflammation, and alteration of cytokine profiles. T helper 17 (Th17) cells belong to a recently identified subset of T helper cells, with crucial regulatory function in inflammatory and autoimmune processes. Th17 cells are implicated in allergic inflammation, intestinal diseases, central nervous system inflammation, disorders that may all contribute to the pathophysiology of CFS. IL-17F is one of the pro-inflammatory cytokines secreted by Th17 cells. We investigated the association between CFS and the frequency of rs763780, a C/T genetic polymorphism leading to His161Arg substitution in the IL-17F protein. The His161Arg variant (C allele) antagonizes the pro-inflammatory effects of the wild-type IL-17F. A significantly lower frequency of the C allele was observed in the CFS population, suggesting that the His161Arg variant may confer protection against the disease. These results suggest a role of Th17 cells in the pathogenesis of CFS.  相似文献   

5.
Th17作为新发现的一类Th细胞亚群,其分泌的IL-17在肿瘤的发生与发展过程中有着重要的作用。大量文献报道IL-17在肿瘤发生发展过程中发挥双刃剑的作用,一方面,IL-17可以通过促进血管生成和肿瘤细胞的迁移促进肿瘤的生长。另一方面,IL-17亦可促进细胞毒性T细胞的免疫应答抑制肿瘤的生长。  相似文献   

6.
Natural killer T (NKT) cells are known to produce Th17 cytokine IL-17 in addition to Th1/2 cytokines. In this study, the ability of NKT cells to produce IL-22, another Th17 cytokine, was examined in mice. When murine spleen cells were stimulated with α-galactosyl ceramide, a ligand for NKT cells, not only Th1/2 cytokines (IFN-γ, IL-4) but Th17 cytokines (IL-17, IL-22) were produced. NKT cells isolated from splenocytes released IL-17 and IL-22 following CD3, CD3/IL-2 or CD3/CD28 stimulation, in which CD3/CD28 costimulation was most effective. Production of IL-17 and IL-22 in CD4+ and CD8+ T cells from splenocytes was little, if any, even after CD3/CD28 costimulation. Treatment with IL-6/TGF-β decreased CD3/CD28-stimulated production of IL-22, but not that of IL-17, in NKT cells. These findings show for the first time that NKT cells are a cell source of IL-22, and that expression of two Th17 cytokines might be regulated in NKT cells by different mechanisms.  相似文献   

7.
Interleukin‐17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL‐17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL‐17A‐producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non‐T non‐B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL‐17 family cytokines other than IL‐17A are also expressed by CD4+ T cells: IL‐17E by Th2 cells and IL‐17F by Th17 cells. IL‐17A and IL‐17F induce expression of pro‐inflammatory cytokines to induce inflammation and anti‐microbial peptides to kill pathogens, whereas IL‐17E induces allergic inflammation. However, the functions of other IL‐17 family cytokines have been unclear. Recent studies have shown that IL‐17B and IL‐17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL‐17E and IL‐17F by epithelial cells has also been reported and epithelial cell‐derived IL‐17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell‐derived IL‐17A and non‐hematopoietic cell‐derived IL‐17B, IL‐17C, IL‐17D, IL‐17E and IL‐17F in infections and propose functional differences between these two categories of IL‐17 family cytokines.  相似文献   

8.
To compare frequency and functional activity of peripheral blood (PB) Th(c)17, Th(c)1 and Treg cells and the amount of type 2 cytokines mRNA we recruited SLE patients in active (n = 15) and inactive disease (n = 19) and healthy age- and gender-matched controls (n = 15). The study of Th(c)17, Th(c)1 and Treg cells was done by flow cytometry and cytokine mRNA by real-time PCR. Compared to NC, SLE patients present an increased proportion of Th(c)17 cells, but with lower amounts of IL-17 per cell and also a decreased frequency of Treg, but with increased production of TGF-β and FoxP3 mRNA. Ιn active compared to inactive SLE, there is a marked decreased in frequency of Th(c)1 cells, an increased production of type 2 cytokines mRNA and a distinct functional profile of Th(c)17 cells. Our findings suggest a functional disequilibrium of T-cell subsets in SLE which may contribute to the inflammatory process and disease pathogenesis.  相似文献   

9.
To determine alteration of immune responses during visceral larva migrans (VLM) caused by Toxascaris leonina at several time points, we experimentally infected mice with embryonated eggs of T. leonina and measured T-helper (Th) cell-related serial cytokine production after infection. At day 5 post infection (PI), most larvae were detected from the lungs, spleen, intestine, and muscle. Expression of thymic stromal lymphopoietin (TSLP) and CCL11 (eotaxin) showed a significant increase in most infected organs, except the intestine. However, expression of the CXCL1 (Gro-α) gene was most highly enhanced in the intestine at day 14 PI. Th1-related cytokine secretion of splenocytes showed increases at day 28 PI, and the level showed a decrease at day 42 PI. Th2-related cytokine secretion of splenocytes also showed an increase after infection; in particular, IL-5 level showed a significant increase at day 14 PI, and the level showed a decrease at day 28 PI. However, levels of Th17-related cytokines, IL-6 and IL-17A, showed gradual increases until day 42 PI. In conclusion, Th1, Th2, and Th17-related cytokine production might be important in immune responses against T. leonina VLM in experimental mice.  相似文献   

10.
11.
Uncontrolled inflammation in systemic lupus erythematosus (SLE) could cause dysfunction in multiple organs. T helper 17 (Th17) cells are a main branch of inflammatory responses in the pathogenesis of SLE, and by producing interleukin 17 (IL-17), represent a major functional tool in the progression of inflammation. Animal models provide a special field for better studies of the pathogenesis of diseases. Tolergenic probiotics could decrease inflammation in autoimmune diseases by modulating the immune system and maintaining homeostasis. The aim of this project was to evaluate the effects of Lactobacillus rhamnosus and Lactobacillus delbrueckii on Th17 cells and their related mediators in a pristane-induced BALB/c mice model of SLE. The mice were divided into pretreatment groups, which received probiotics or prednisolone at Day 0, and treatment groups, which received probiotics and prednisolone 2 months after injection. The presence of antinuclear antibody (ANA), anti-double-stranded DNA (anti-dsDNA), and anti-ribonucleoprotein (anti-RNP) and lipogranuloma was evaluated; also, the population of Th1–Th17 cells as well as interferon γ (IFN-γ), IL-17, and IL-10 levels, and the expression of RAR-related orphan related receptor gamma (RORγt) and IL-17 were determined. We observed that probiotics and prednisolone could delay SLE in pretreatment and treatment mice groups, with a reduction in ANA, anti-dsDNA, anti-RNP, and mass of lipogranuloma. Probiotics and prednisolone decreased the population of Th1–Th17 cells and reduced IFN-γ and IL-17 as inflammatory cytokines in the pretreatment and treatment groups in comparison with SLE-induced mice. Our results indicated that, due to their anti-inflammatory properties and reduction of Th17, Th1, and cytotoxic T lymphocyte (CTL) cells, the use of these probiotics could probably represent a new tool for the better management of SLE.  相似文献   

12.
炎症性肠病(Inflammatory Bowel Diseases,IBD),是一组病因未明的累及胃肠道的慢性炎症性疾病,一般指克罗恩病(Crohn’sdisease,CD)和溃疡性结肠炎(ulcerative colitis,UC)。目前认为它是由多种因素相互作用所致的一种自身免疫性疾病,主要包括免疫、环境以及遗传等因素,其中免疫在IBD的发生过程中起着极其重要的作用。以往研究认为与T辅助细胞(T Helper cells)Th1或Th2细胞反应的增强或减弱有关。然而最近研究发现一类新细胞亚群,称为Th17细胞,与之相关的细胞因子可导致包括肠道在内的多脏器病变。Th17细胞分化过程中又需要IL-23的参与,因此IL-23/Th17细胞在炎症性肠病患者肠道内过度表达可以解释肠组织损伤的新途径,并为制定新的治疗策略提出依据。本文就IL-23/Th17轴在炎症性肠病中的作用的研究进展作一综述。  相似文献   

13.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.  相似文献   

14.
目前产白介素-17(IL-17)T细胞主要包括了产IL-17 CD4+T细胞即Th17细胞、产IL-17γδT细胞和产IL-17 CD8+T细胞等。随着对Th17这一系细胞功能研究的不断深入,发现它们能通过产生IL-17和IL-22等细胞因子参与炎症反应。该文将对产IL-17 T细胞在肺部细菌感染中所起作用的最近研究进展进行综述。  相似文献   

15.
Th17 cells, which produce IL-17 and IL-22, promote autoimmunity in mice and have been implicated in the pathogenesis of autoimmune/inflammatory diseases in humans. However, the Th17 immune response in the aging process is still not clear. In the present study, we found that the induction of IL-17-produing CD4+ T cells was significantly increased in aged individuals compared with young healthy ones. The mRNA expression of IL-17, IL-17F, IL-22, and RORC2 was also significantly increased in aged people. Similar to humans, Th17 cells as well as mRNAs encoding IL-17, IL-22 and RORγt were dramatically elevated in naïve T cells from aged mouse compared to young ones. In addition, CD44 positive IL-17-producing CD4+ T cells were significantly higher in aged mice, suggesting that memory T cells are an important source of IL-17 production. Furthermore, the percentage of IL-17-produing CD4+ T cells generated in co-culture with dendritic cells from either aged or young mice did not show significant differences, suggesting that dendritic cells do not play a primary role in the elevation of Th17 cytokines in aged mouse cells. Importantly, transfer of CD4+CD45Rbhi cells from aged mice induced more severe colitis in RAG−/− mice compared to cells from young mice, Taken together, these results suggest that Th17 immune responses are elevated in aging humans and mice and may contribute to the increased development of inflammatory disorders in the elderly.  相似文献   

16.
17.
18.
The aim of this study was to determine whether CD4(+) IL-17A(+) Th17 cells infiltrate vitiligo skin and to investigate whether the proinflammatory cytokines related to Th17 cell influence melanocyte enzymatic activity and cell fate. An immunohistochemical analysis showed Th17 cell infiltration in 21 of 23 vitiligo skin samples in addition to CD8(+) cells on the reticular dermis. An in vitro analysis showed that the expression of MITF and downstream genes was downregulated in melanocytes by treatment with interleukin (IL)-17A, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Treatment with these cytokines also induced morphological shrinking in melanocytes, resulting in decreased melanin production. In terms of local cytokine network in the skin, IL-17A dramatically induced IL-1β, IL-6, and TNF-α production in skin-resident cells such as keratinocytes and fibroblasts. Our results provide evidence of the influence of a complex Th17 cell-related cytokine environment in local depigmentation in addition to CD8(+) cell-mediated melanocyte destruction in autoimmune vitiligo.  相似文献   

19.
Th17细胞和Treg细胞是CD4+T细胞在不同细胞因子环境中分化出的新亚群,发挥不同的生物学效应,使机体的免疫系统处于平衡状态.Th17/Treg细胞失衡可引起一系列自身免疫性疾病.银屑病是与遗传、免疫异常有关的皮肤炎症性疾病,其发病机制尚不清楚.越来越多的研究发现,Th17细胞增多和Treg细胞减少及其分泌的细胞因子在银屑病的发病中有着重要作用.本文围绕这一机制综述了近年来有关Th17细胞、Treg细胞在银屑病发病机制中作用的研究,帮助我们更深入地了解银屑病的发病机制并为今后临床诊断和治疗提供依据.  相似文献   

20.
近年研究发现了效应性辅助性T细胞的新亚群-Th17细胞,它主要分泌IL-17、IL-17F、IL-21和IL-22等细胞因子。Th17细胞及其效应分子被认为与自身免疫病和其他多种疾病相关。该文从Th17细胞的发现、人和小鼠Th17细胞的分化、Th17细胞的效应性因子及与健康和疾病的相关性几个方面对目前的研究进展进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号