首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein tyrosine phosphatases (PTPs) SHP-1, SHP-2 and PTP1B are overexpressed early on during the development of cerulein -induced acute pancreatitis (AP) in rats, and their levels can be modulated by some species of mitogen-activated protein kinases (MAPKs), the intracellular levels of cAMP and by general leukocyte infiltration, the latter at least for SHP-2 and PTP1B. In this study we show that cerulein treatment activates extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) but not p38 MAPK during the early phase of cerulein-induced AP (2 h after the first injection of cerulein). Therefore, by using the MAPK inhibitors SP600125 (a specific JNK inhibitor) and PD98059 (a specific ERK inhibitor), we have unmasked the particular MAPK that underlies the modulation of the expression levels of these PTPs. JNK would act by preventing SHP-1 protein expression from increasing beyond a certain level. ERK 1/2 was the main MAPK involved in the increase in SHP-2 protein expression due to cerulein. JNK negatively modulated the SH2-domain containing PTPs. Both MAPKs played a role in the increase in PTP1B protein expression due to cerulein. Finally, by using the white blood cell inhibitors vinblastine sulfate, gadolinium chloride and FK506 (tacrolimus), we show that the macrophage activity or T-lymphocytes does not modulate the expression of any of the PTPs, although neutrophil infiltration was found to be a regulator of SHP-2 and PTP1B protein expression due to cerulein.  相似文献   

2.
Protein tyrosine phosphatases (PTPs) are important regulators of cell functions but data on different PTP expression and dynamics in acute pancreatitis (AP) are very scarce. Additionally, both c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinases (ERK1/2), together with intracellular cAMP levels in inflammatory cells, play an essential role in AP. In this study we have detected an increase in PTP SHP-1 and SHP-2 in the pancreas at the level of both protein and mRNA as an early event during the development of Cerulein (Cer)-induced AP in rats. Nevertheless, while SHP-2 protein returned to baseline levels in the intermediate or later phases of AP, SHP-1 protein expression remained increased throughout the development of the disease. The increase in SHP-2 protein expression was associated with changes in its subcellular distribution, with higher percentages located in the fractions enriched in lysosomes+mitochondria or microsomes. Furthermore, while the increase in SHP-2 protein was also observed in sodium-taurocholate duct infusion or bile-pancreatic duct obstruction AP, that of SHP-1 was specific to the Cer-induced model. Neutrophil infiltration did not affect the increase in SHP-1 protein, but favoured the return of SHP-2 protein to control levels, as indicated when rats were rendered neutropenic by the administration of vinblastine sulfate. Inhibition of JNK and ERK1/2 with SP600125 pre-treatment further increased the expression of both SHP-1 and SHP-2 proteins in the early phase of Cer-induced AP, while the inhibition of type IV phosphodiesterase with rolipram only suppressed the increase in SHP-2 protein expression during the same phase. Our results show that AP is associated with increases in the expression of SHP-1 and SHP-2 and changes in the dynamics of SHP-2 subcellular distribution in the early phase of Cer-induced AP. Finally, both JNK and ERK1/2 and intracellular cAMP levels are able to modulate the expression of these PTPs.  相似文献   

3.
Okadaic acid (OA) is a specific and potent protein phosphatase inhibitor and tumor promoter. The present study establishes the role of reactive oxygen species (ROS) and mitogen activated protein kinases in cell death induced by okadaic acid. The study showed that okadaic acid is cytotoxic at 10 nM with an IC50 of 100 nM in U-937 cells. The CVDE assay and mitochondrial dehydrogenase assay showed a time dependent cytotoxicity. The phase contrast visualization of the OA treated cells showed the apoptotic morphology and was confirmed with esterase staining for plasma membrane integrity. OA activated caspases-7, 9 and 3, PARP cleavage and induced nuclear damage in a time and dose dependent manner. Compromised mitochondrial membrane potential, release of cytochrome-c and apoptosis inducing factor confirms the involvement of mitochondria. A time dependent decrease in glutathione levels and a dose dependent increase in ROS with maximum at 30 min were observed. ROS scavenger-N-acetyl cysteine, mitochondrial stabilizer-cyclosporin-A, and broad spectrum caspase inhibitor Z-VAD-FMK inhibited the OA induced caspase-3 activation, DNA damage and cell death but caspase-8 inhibitor had no effect. OA activated p38 MAPK and JNK in a time dependent manner, but not ERK½. MAP kinase inhibitors SB203580, SP600125 and PD98059 confirm the role of p38 MAPK and JNK in OA induced caspase-3 activation and cell death. Over all, our results indicate that OA induces cell death by generation of ROS, and activation of p38 MAPK and JNK, and executed through mitochondrial mediated caspase pathway.  相似文献   

4.
Acute pancreatitis (AP) is an inflammatory disease involving the production of different cytokines and chemokines and is characterized by leukocyte infiltration. Because the chemokine receptor CCR5 and its ligands [the CC chemokines CCL3/MIP-1alpha, CCL4/MIP-1beta, and CCL5/regulated upon activation, normal T cell expressed and secreted (RANTES)] regulate leukocyte chemotaxis and activation, we investigated the expression of CCR5 ligands and the role of CCR5 and its ligands in experimental AP in mice. AP was induced by hourly intraperitoneal injections of cerulein in CCR5-deficient (CCR5(-/-)) or wild-type (WT) mice. Induction of AP by cerulein resulted in an early increase of pancreatic CCL2, CCL3, and CCL4 mRNA expression, whereas CCL5 mRNA expression occurred later. CCR5(-/-) mice developed a more severe pancreatic injury than WT mice during cerulein-induced AP, as assessed by a more pronounced increase in serum amylase and lipase levels and by more severe pancreatic edema, inflammatory infiltrates (mainly neutrophils), and necrosis. CCR5(-/-) mice also exhibited increased production of CCL2/MCP-1, CCL3/MIP-1alpha, and CCL4/MIP-1beta during the course of cerulein-induced AP. In vivo simultaneous neutralization of CC chemokines with monoclonal antibodies in CCR5(-/-) mice reduced the severity of cerulein-induced AP, indicating a role of CC chemokines in exacerbating the course of AP in the absence of CCR5. Moreover, simultaneous neutralization of CCR5 ligands in WT mice also reduced the severity of cerulein-induced AP. In conclusion, lack of the chemokine receptor CCR5 exacerbates experimental cerulein-induced AP and leads to increased levels of CC chemokines and a more pronounced pancreatic inflammatory infiltrate, suggesting that CCR5 expression can modulate severity of AP.  相似文献   

5.
The innate immune response to Listeria monocytogenes depends on phagosomal bacterial degradation by macrophages. Here, we describe the role of LIMP-2, a lysosomal type III transmembrane glycoprotein and scavenger-like protein, in Listeria phagocytosis. LIMP-2-deficient mice display a macrophage-related defect in Listeria innate immunity. They produce less acute phase pro-inflammatory cytokines/chemokines, MCP-1, TNF-α, and IL-6 but normal levels of IL-12, IL-10, and IFN-γ and a 25-fold increase in susceptibility to Listeria infection. This macrophage defect results in a low listericidal potential, poor response to TNF-α activation signals, impaired phago-lysosome transformation into antigen-processing compartments, and uncontrolled LM cytosolic growth that fails to induce normal levels of acute phase pro-inflammatory cytokines. LIMP-2 transfection of CHO cells confirmed that LIMP-2 participates in the degradation of Listeria within phagosomes, controls the late endosomal/lysosomal fusion machinery, and is linked to the activation of Rab5a. Therefore, the role of LIMP-2 appears to be connected to the TNF-α-dependent and early activation of Listeria macrophages through internal signals linking the regulation of late trafficking events with the onset of the innate Listeria immune response.  相似文献   

6.
Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFκB-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-lα (MIP-lα) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NFκB and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NFκB and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NFκB and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NFκB and AP-1 signalling pathways in mouse pancreatic acini.  相似文献   

7.
Members of the mitogen-activated protein kinase (MAPK) family, including Jun amino-terminal kinase (JNK) and extracellular signal-related kinase (ERK), play an important role in the proliferation of erythroid cells in response to erythropoietin (Epo). Erythroid cells infected with the Friend spleen focus-forming virus (SFFV) proliferate in the absence of Epo and show constitutive activation of Epo signal transduction pathways. We previously demonstrated that the ERK pathway was constitutively activated in Friend SFFV-infected erythroid cells, and in this study JNK is also shown to be constitutively activated. Pharmacological inhibitors of both the ERK and JNK pathways stopped the proliferation of primary erythroleukemic cells from Friend SFFV-infected mice, with little induction of apoptosis, and furthermore blocked their ability to form Epo-independent colonies. However, only the JNK inhibitor blocked the proliferation of erythroleukemia cell lines derived from these mice. The JNK inhibitor caused significant apoptosis in these cell lines as well as an increase in the fraction of cells in G(2)/M and undergoing endoreduplication. In contrast, the growth of erythroleukemia cell lines derived from Friend murine leukemia virus (MuLV)-infected mice was inhibited by both the MEK and JNK inhibitors. JNK is important for AP1 activity, and we found that JNK inhibitor treatment reduced AP1 DNA-binding activity in primary erythroleukemic splenocytes from Friend SFFV-infected mice and in erythroleukemia cell lines from Friend MuLV-infected mice but did not alter AP1 DNA binding in erythroleukemia cell lines from Friend SFFV-infected mice. These data suggest that JNK plays an important role in cell proliferation and/or the survival of erythroleukemia cells.  相似文献   

8.
Accumulating evidence suggests the neuropeptide substance P (SP) and its receptor neurokinin-1 receptor (NK-1R) play a pivotal role in the pathogenesis of acute pancreatitis (AP). However, the mechanisms remain unclear. The present study investigated whether chemokines as proinflammatory molecules are involved in SP-NK-1R-related pathogenesis of this condition. We observed temporally and spatially selective chemokine responses in secretagogue caerulein-induced AP in mice. CC chemokines monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein-1alpha (MIP-1alpha) and CXC chemokine MIP-2 were elevated after AP induction. Time-dependent, tissue-specific analysis of their mRNA and protein expression suggested that they are early mediators in the condition and mediate local as well as systemic inflammatory responses. In contrast, another CC chemokine regulated on activation, T cells expressed and secreted (RANTES) was only involved in local pancreatic inflammation at a later stage of the disease. Either prophylactic or therapeutic treatment with a potent selective NK-1R antagonist CP-96,345 significantly suppressed caerulein-induced increase in MCP-1, MIP-1alpha, and MIP-2 expression but had no apparent effect on RANTES expression. The suppression effect of CP-96,345 on MCP-1, MIP-1alpha, and MIP-2 expression was concordantly demonstrated by immunohistochemistry, which, additionally, suggested that chemokine immunoreactivity was localized to acinar cells and the infiltrating leukocytes in the pancreas and alveolar macrophages, epithelial cells, and endothelial cells in the lungs. Our data suggest that SP, probably by acting via NK-1R on various chemokine-secreting cells in the pancreas and lungs, stimulates the release of chemokines that aggravate local AP and the development of its systemic sequelae.  相似文献   

9.
Tumor necrosis factor‐α (TNF‐α), a pro‐inflammatory cytokine with a critical role in osteoarthritis (OA), was primarily produced by monocytes/macrophages and plays a crucial role in the inflammatory response. Here, we investigated the intracellular signaling pathways involved in TNF‐α‐induced monocyte chemoattractant protein 1 (MCP‐1)/CCL2 expression in human synovial fibroblast cells. Stimulation of synovial fibroblasts (OASF) with TNF‐α induced concentration‐ and time‐dependent increases in CCL2 expression. TNF‐α‐mediated CCL2 production was attenuated by TNFR1 monoclonal antibody (Ab). Pretreatment with an apoptosis signal‐regulating kinase 1 (ASK1) inhibitor (thioredoxin), JNK inhibitor (SP600125), p38 inhibitor (SB203580), or AP‐1 inhibitor (curcumin or tanshinone IIA) also blocked the potentiating action of TNF‐α. Stimulation of cells with TNF‐α enhanced ASK1, JNK, and p38 activation. Treatment of OASF with TNF‐α also increased the accumulation of phosphorylated c‐Jun in the nucleus, AP‐1‐luciferase activity, and c‐Jun binding to the AP‐1 element on the CCL2 promoter. TNF‐α‐mediated AP‐1‐luciferase activity and c‐Jun binding to the AP‐1 element were inhibited by TNFR1 Ab, thioredoxin, SP600125, and SB203580. Our results suggest that the interaction between TNF‐α and TNFR1 increases CCL2 expression in human synovial fibroblasts via the ASK1, JNK/p38, c‐Jun, and AP‐1 signaling pathway. J. Cell. Biochem. 113: 3509–3519, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
11.
Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction and to the subsequent systemic inflammatory response, which may result in multiple organ dysfunction and death. Inflammatory mediators, including chemokines and substance P (SP), are known to play a crucial role in the pathogenesis of acute pancreatitis. It has been shown that pancreatic acinar cells produce the chemokine monocyte chemoattractant protein-1 (MCP-1) in response to caerulein hyperstimulation, demonstrating that acinar-derived MCP-1 is an early mediator of inflammation in acute pancreatitis. Similarly, SP levels in the pancreas and pancreatic acinar cell expression of neurokinin-1 receptor, the primary receptor for SP, are both increased during secretagogue-induced experimental pancreatitis. This study aims to examine the functional consequences of exposing mouse pancreatic acinar cells to SP and to determine whether it leads to proinflammatory signaling, such as production of chemokines. Exposure of mouse pancreatic acini to SP significantly increased synthesis of MCP-1, macrophage inflammatory protein-1alpha (MIP-1alpha), as well as MIP-2. Furthermore, SP also increased NF-kappaB activation. The stimulatory effect of SP was specific to chemokine synthesis through the NF-kappaB pathway, since the increase in chemokine production was completely attenuated when pancreatic acini were pretreated with the selective NF-kappaB inhibitor NF-kappaB essential modulator-binding domain peptide. This study shows that SP-induced chemokine synthesis in mouse pancreatic acinar cells is NF-kappaB dependent.  相似文献   

12.
Little information is available regarding the role of circulating leukocytes in the pathogenesis of acute pancreatitis (AP). Our aim was to explore the time-course of the potential role of inflammatory peripheral blood (PB) cells during AP induced in rats by pancreatic duct obstruction (PDO). Flow cytometry immunophenotyping was used to analyse the distribution of the major circulating leukocyte subsets, the activation state of circulating monocytes as reflected by both CD11b expression and TNF-α production and the relative contribution of T-cell derived pro- (TNF-α) and anti- (IL-10) inflammatory mediators at different stages of PDO-induced AP. A progressive increase in PB neutrophils and monocytes was observed up to 6 h after PDO whereas lymphocytes, as well as CD4+ and CD8+ T-cell subsets, rose as early as 1.5 h after PDO and decreased thereafter. Monocytes were activated in PB from 6 h after inducing AP as reflected by increases in both CD11b expression and spontaneous TNF-α production; nevertheless, they showed the capability of producing TNF-α at earlier AP stages by lipopolysaccharide (LPS) stimulation. In contrast, T-cells were unable to produce TNF-α during AP neither spontaneously nor after stimulation with PMA/Ionomycin. Therefore, only PB monocytes contribute to increase TNF-α levels in plasma as observed from 12 h onwards after inducing AP. Interleukin-10 was produced by T-cells 6 h after PDO only after PMA/Ionomycin stimulation. We conclude that systemic inflammatory events are triggered off at early stages of PDO-induced AP, with the activation of circulating monocytes, though not T-cells, playing a central role.  相似文献   

13.
Macrophage infiltration contributes to the pathogenesis of diabetic renal injury. However, the regulatory mechanisms between macrophage infiltration and epithelial cell activation are still unclear. Our previous study found that C66, a novel curcumin analog, was able to inhibit inflammatory cytokine expression in vitro and in vivo. This study further elucidated whether C66 can prevent glucose-induced renal epithelial activation and inflammatory macrophage infiltration by a MAPK/NF-κB medicated mechanism. Our data show that pretreatment with C66 not only significantly reduced high glucose (HG)-induced over-expressions of VCAM-1, ICAM-1 and MCP-1, but also remarkably inhibited NF-κB activation, MAPKs phosphorylation, and subsequently macrophage adhesion in renal epithelial NRK-52E cells. Furthermore, we find that MAPKs, especially JNK, play important roles in HG-induced NF-κB activation, which regulates the over-expression of adhesion molecules in HG-stimulated NRK-52E cells. A molecular docking predicted that C66 may target JNK2, which leads to its anti-inflammatory actions. In vivo, administration of C66 or JNK special inhibitor SP600125 at 5 mg/kg markedly decreased diabetes-induced renal adhesion molecule expression, NF-κB activation, inflammatory cell infiltration, and pathological indexes in the kidneys of diabetic mice. These findings provide a perspective on the renoprotective effects of C66 in diabetes, and outline a novel therapeutic strategy of JNK inhibition for the treatment of diabetic nephropathy.  相似文献   

14.
15.
The intensity and duration of an inflammatory response depends on the balance of factors that favor perpetuation versus resolution. At sites of inflammation, neutrophils adherent to other cells or matrix components are exposed to tumor necrosis factor-alpha (TNFalpha). Although TNFalpha has been implicated in induction of pro-inflammatory responses, it may also inhibit the intensity of neutrophilic inflammation by promoting apoptosis. Since TNFalpha is not only an important activator of the stress-induced pathways leading to p38 MAPk and c-Jun N-terminal kinase (JNK) but also a potent effector of apoptosis, we investigated the effects of TNFalpha on the JNK pathway in adherent human neutrophils and the potential involvement of this pathway in neutrophil apoptosis. Stimulation with TNFalpha was found to result in beta2 integrin-mediated activation of the cytoplasmic tyrosine kinases Pyk2 and Syk, and activation of a three-part MAPk module composed of MEKK1, MKK7, and/or MKK4 and JNK1. JNK activation was attenuated by blocking antibodies to beta2 integrins, the tyrosine kinase inhibitors, genistein, and tyrphostin A9, a Pyk2-specific inhibitor, and piceatannol, a Syk-specific inhibitor. Exposure of adherent neutrophils to TNFalpha led to the rapid onset of apoptosis that was demonstrated by augmented annexin V binding and caspase-3 cleavage. TNFalpha-induced increases in annexin V binding to neutrophils were attenuated by blocking antibodies to beta2 integrins, and the caspase-3 cleavage was attenuated by tyrphostin A9. Hence, exposure of adherent neutrophils to TNFalpha leads to utilization of the JNK-signaling pathways that may contribute to diverse functional responses including induction of apoptosis and subsequent resolution of the inflammatory response.  相似文献   

16.
目的:探讨白细胞介素-17A(IL-17A)对慢性阻塞性肺疾病(COPD)的干预作用及其机制。方法:C57BL/6小鼠随机分为野生型空白对照组、野生型COPD组和IL-7A敲除COPD组,每组20只。野生型空白对照组小鼠不做任何处理,其余两组小鼠暴露于香烟烟雾(1支/次,4次/日,每次45 min,每次间隔时间为1 h,总干预时间为90 d)制作COPD模型。干预结束24 h后,利用动物肺功能检测系统测定小鼠肺功能。收集小鼠支气管肺泡灌洗液(BALF),测定BALF细胞计数和分类。收集小鼠肺组织,采用流式细胞法测定气道上皮IL-17A表达水平,采用酶联免疫吸附法测定肺组织炎症因子水平。采用蛋白免疫印迹法测定小鼠肺组织JNK/AP1信号通路蛋白表达水平。结果:与野生型空白对照组小鼠比较,野生型COPD组小鼠气道上皮IL-17A表达水平明显升高,吸气峰流速(PIF)和呼气峰流速(PEF)明显降低,BALF中性粒细胞、嗜酸性粒细胞、淋巴细胞和巨噬细胞数明显升高,肺组织CXC类趋化因子1(CXCL1)、CXC类趋化因子2(CXCL2)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)表达水平明显升高,JNK、cJun和cFos磷酸化水平及AP1表达水平明显升高(P<0.05);与野生型COPD组小鼠比较,IL-7A敲除COPD组小鼠气道上皮IL-17A表达水平明显降低,PIF和PEF明显升高,BALF中性粒细胞、嗜酸性粒细胞、淋巴细胞和巨噬细胞数明显降低,肺组织CXCL1、CXCL2、IL-1β和IL-6表达水平明显降低,JNK、cJun和cFos磷酸化水平及AP1表达水平明显降低(P<0.05)。结论:香烟烟雾可诱导小鼠气道上皮产生IL-17A,降低(或抑制)IL-17A的产生(或表达或分泌),通过抑制JNK/AP1信号通路,减轻COPD气道炎症反应,改善COPD小鼠肺功能。  相似文献   

17.
Although alcohol abuse is the major cause of chronic pancreatitis, the pathogenesis of alcoholic chronic pancreatitis (ACP) remains obscure. A critical obstacle to understanding the mechanism of ACP is lack of animal models. Our objective was to develop one such model. Rats were pair-fed for 8 wk ethanol or control Lieber-DeCarli liquid diet. For the last 2 wk, they received cyclosporin A (CsA; 20 mg/kg once daily) or vehicle. After 1 wk on CsA, one episode of acute pancreatitis was induced by four 20 microg/kg injections of cerulein (Cer); controls received saline. Pancreas was analyzed 1 wk after the acute pancreatitis. CsA or Cer treatments alone did not result in pancreatic injury in either control (C)- or ethanol (E)-fed rats. We found, however, that alcohol dramatically aggravated pathological effect of the combined CsA+Cer treatment on pancreas, resulting in massive loss of acinar cells, persistent inflammatory infiltration, and fibrosis. Macrophages were prominent in the inflammatory infiltrate. Compared with control-fed C+CsA+Cer rats, their ethanol-fed E+CsA+Cer counterparts showed marked increases in pancreatic NF-kappaB activation and cytokine/chemokine mRNA expression, collagen and fibronectin, the expression and activities of matrix metalloproteinase-2 and -9, and activation of pancreatic stellate cells. Thus we have developed a model of alcohol-mediated postacute pancreatitis that reproduces three key responses of human ACP: loss of parenchyma, sustained inflammation, and fibrosis. The results indicate that alcohol impairs recovery from acute pancreatitis, suggesting a mechanism by which alcohol sensitizes pancreas to chronic injury.  相似文献   

18.
Apolipoprotein E (apoE), a ligand for the low-density lipoprotein receptor family, has been implicated in modulating glial inflammatory responses and the risk of neurodegeneration associated with Alzheimer’s disease. Glial cells activated by lipopolysaccharide (LPS) have decreased apoE levels and we recently showed that apoE itself can modulate the inflammatory response by reducing c-Jun N-terminal kinase (JNK) activation. Reduced JNK phosphorylation is vital to overcome the LPS-induced decrease in apoE expression, suggesting that JNK inhibition may be an effective way to increase apoE protein and protract its anti-inflammatory properties. This study investigates the impact of JNK inhibition on apoE production using two JNK inhibitors. Our work in primary glia and in vivo in mice injected with JNK inhibitor demonstrates that inhibition of JNK may be an effective way to increase apoE expression.  相似文献   

19.
Neutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG. Recruited neutrophils were shown to phagocyte BCG and a large number of neutrophils undergo apoptosis within 24 h. Notably, the great majority of apoptotic neutrophils were infected by BCG. Increased lipid body (lipid droplets) formation, accompanied by prostaglandin E(2) (PGE(2)) and TGF-beta1 synthesis, occurred in parallel to macrophage uptake of apoptotic cells. Lipid body and PGE(2) formation was observed after macrophage exposure to apoptotic, but not necrotic or live neutrophils. Blockage of BCG-induced lipid body formation significantly inhibited PGE(2) synthesis. Pre-treatment with the pan-caspase inhibitor zVAD inhibited BCG-induced neutrophil apoptosis and lipid body formation, indicating a role for apoptotic neutrophils in macrophage lipid body biogenesis in infected mice. In conclusion, BCG infection induced activation and apoptosis of infected neutrophils at the inflammatory site. The uptake of apoptotic neutrophils by macrophages leads to TGF-beta1 generation and PGE(2)-derived lipid body formation, and may have modulator roles in mycobacterial pathogenesis.  相似文献   

20.
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor α are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCα. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号