首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity   总被引:6,自引:0,他引:6  
Positional cloning work and subsequent biochemical analyses have revealed that Toll-like receptor 4 (Tlr4) transduces the lipopolysaccharide (LPS) signal, alerting the host to infection by Gram-negative bacteria. Moreover, it appears that the LPS sensing pathway is a solitary one: disruption of Tlr4 causes complete unresponsiveness to LPS. As several Tlr family members exist in vertebrates, it appears likely that the innate immune system defends the host by recognizing a small number of structurally conserved molecules that distinguish the microbial world from tissues of the host.  相似文献   

2.
Recombinant inbred (RI) mice are frequently used to identify QTL that underlie differences in measurable phenotypes between two inbred strains of mice. Here we show that one RI strain, C57BL/6J x DBA/2J (BXD29), does not develop an inflammatory response following inhalation of LPS. Approximately 25% of F2 mice [F1(BXD29 x DBA/2J) x F1] are also unresponsive to inhaled LPS, suggesting the presence of a recessive mutation in the BXD29 strain. A genomic scan of these F2 mice revealed that unresponsive animals, but not responsive animals, are homozygous for C57BL/6J DNA at a single locus on chromosome 4 close to the genomic location of Tlr4. All progeny between BXD29 and gene-targeted Tlr4-deficient mice are unresponsive to inhaled LPS, suggesting that the mutation in the BXD29 strain is allelic with Tlr4. Moreover, the intact Tlr4 receptor is not displayed on the cell surface of BXD29 macrophages. Finally, a molecular analysis of the Tlr4 gene in BXD29 mice revealed that it is interrupted by a large insertion of repetitive DNA. These findings explain the unresponsiveness of BXD29 mice to LPS and suggest that data from BXD29 mice should not be included when using BXD mice to study phenotypes affected by Tlr4 function. Our results also suggest that the frequency of such unidentified, spontaneously occurring mutations is an issue that should be considered when RI strains are used to identify QTL.  相似文献   

3.
Toll-like receptors are transmembrane proteins that are involved in the innate immune recognition of microbial constituents. Among them, Toll-like receptor 4 (Tlr4) is a crucial signal transducer for LPS, the major component of Gram-negative bacteria outer cell membrane. The contribution of Tlr4 to the host response to LPS and to infection with virulent Salmonella typhimurium was studied in four transgenic (Tg) strains including three overexpressing Tlr4. There was a good correlation between the level of Tlr4 mRNA expression and the sensitivity to LPS both in vitro and in vivo: Tg mice possessing the highest number of Tlr4 copies respond the most to LPS. Overexpression of Tlr4 by itself appears to have a survival advantage in Tg mice early during infection: animals possessing more than two copies of the gene survived longer and in a greater percentage to Salmonella infection. The beneficial effect of Tlr4 overexpression is greatly enhanced when the mice present a wild-type allele at natural resistance-associated macrophage protein 1, another critical innate immune gene involved in resistance to infection with SALMONELLA: Tlr4 and natural resistance-associated macrophage protein 1 exhibit functional epistatic interaction to improve the capacity of the host to control bacterial replication. However, this early improvement in disease resistance is not conducted later during infection, because mice overexpressing Tlr4 developed an excessive inflammatory response detrimental to the host.  相似文献   

4.
A point mutation in the Tlr4 gene, which encodes Toll-like receptor 4, has recently been proposed to underlie LPS hyporesponsiveness in C3H/HeJ mice (Lpsd). The data presented herein demonstrate that F1 progeny from crosses between mice that carry a approximately 9-cM deletion of chromosome 4 (including deletion of LpsTlr4) and C3H/HeJ mice (i.e., Lps0 x Lpsd F1 mice) exhibit a pattern of LPS sensitivity, measured by TNF activity, that is indistinguishable from that exhibited by Lpsn x Lpsd F1 progeny and whose average response is "intermediate" to parental responses. Thus, these data provide clear functional support for the hypothesis that the C3H/HeJ defect exerts a dominant negative effect on LPS sensitivity; however, expression of a normal Toll-like receptor 4 molecule is apparently not required.  相似文献   

5.
6.
Recombinant heat shock fusion proteins (Hsfp) injected into mice without added adjuvants can stimulate production of CD8 cytolytic T cells. Because initiation of productive immune responses generally requires dendritic cell (DC) activation, the question arises as to whether the Hsfp can activate DC independently of contaminating LPS. Using microarray analyses of DC from LPS-insensitive mice having a point mutation in Toll-like receptor 4 (Tlr4) (C3H/HeJ), or lacking Tlr4 (B10/ScNCr), we show here that unlike a LPS standard, Hsfp activated DC from HeJ mice almost as well as DC from wild-type mice. Consistent with the microarray analysis, the Hsfp's ability to activate DC was not eliminated by polymyxin B but was destroyed by proteinase K. The Hsfp did not, however, stimulate DC from mice lacking Tlr4. In vivo the CD8 T cell response to the Hsfp in mice lacking Tlr4 was impaired: the responding CD8 cells initially proliferated vigorously but their development into cytolytic effector cells was diminished. Overall, the results indicate that this Hsfp can activate DC independently of LPS but still requires Tlr4 for an optimal CD8 T cell response.  相似文献   

7.
For several decades, the mouse strains C3H/HeJ and C57BL/10ScNCr have been known to be hyporesponsive to endotoxin or lipopolysaccharide (LPS). Recently, mutations in Toll-like receptor (TLR) 4 have been shown to underlie this aberrant response to LPS. To further determine the relationship between TLR4 and responsiveness to LPS, we genotyped 18 strains of mice for TLR4 and evaluated the physiological and biological responses of these strains to inhaled LPS. Of the 18 strains tested, 6 were wild type for TLR4 and 12 had mutations in TLR4. Of those strains with TLR4 mutations, nine had mutations in highly conserved residues. Among the strains wild type for TLR4, the inflammatory response in the airway induced by inhalation of LPS showed a phenotype ranging from very sensitive (DBA/2) to hyporesponsive (C57BL/6). A broad spectrum of airway hyperreactivity after inhalation of LPS was also observed among strains wild type for TLR4. Although the TLR4 mutant strains C3H/HeJ and C57BL/10ScNCr were phenotypically distinct from the other strains with mutations in the TLR4 gene, the other strains with mutations for TLR4 demonstrated a broad distribution in their physiological and biological responses to inhaled LPS. The results of our study indicate that although certain TLR4 mutations can be linked to a change in the LPS response phenotype, additional genes are clearly involved in determining the physiological and biological responses to inhaled LPS in mammals.  相似文献   

8.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

9.
Gram-negative bacterial lipopolysaccharide evokes a protective inflammatory response in the normal host. Through genetic analysis of mutant mice, the gene encoding Toll-like receptor 4 (Tlr4) was recently identified as a critical component of this host defense mechanism. Tlr4 is a member of an ancient gene family that regulates antimicrobial host defense in plants, invertebrates and mammals.  相似文献   

10.
11.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

12.
Genetic evidence indicating that TOLL-like receptor 4 (Tlr4) is the lipopolysaccharide (LPS) receptor in mice was reported. However, biochemical evidence that murine Tlr4 confers LPS responsiveness has not been convincingly demonstrated. Inducible cyclooxygenase (COX-2) is selectively expressed in LPS-stimulated macrophages in part mediated through the activation of NF kappa B. Thus, we determined whether murine Tlr4 confers LPS responsiveness as evaluated by the activation of NF kappa B and COX-2 expression. Transfection of a murine macrophage-like cell line (RAW264.7) with the constitutively active form (delta Tlr4) of Tlr4 is sufficient to activate NF kappa B and COX-2 expression. However, the truncated form (delta Tlr4(P712H)) of the missense mutant Tlr4(P712H) found in LPS-hyporesponsive mouse strain (C3H/HeJ) inhibits LPS-induced NF kappa B activation and COX-2 expression. The inability of delta Tlr4(P712H) to activate NF kappa B and induce COX-2 expression is rescued by a constitutively active adapter protein myeloid differentiation factor 88 (MyD88), which interacts directly with the cytoplasmic domain of Tlr proteins. Furthermore, MyD88 is co-immunoprecipitated with the wild-type delta Tlr4 but not with the delta Tlr4(P712H) mutant. Together, these results indicate that Tlr4 confers LPS responsiveness in RAW264.7 cells and suggest that hyporesponsiveness of C3H/HeJ mice to LPS is attributed to the disruption of Tlr4-mediated signaling pathways that results from the inability of the mutant Tlr4(P712H) to interact with MyD88.  相似文献   

13.
14.
The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-kappaB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.  相似文献   

15.
TLR4在哺乳动物对脂多糖反应中的作用   总被引:9,自引:1,他引:8  
Toll信号转导通路在果蝇的发育和天然免疫反应中起重要作用.最近在小鼠进行的定点克隆研究表明Lps位座编码一种Toll样受体TLR4,该受体作为LPS受体复合物的跨膜成分而转导脂多糖(LPS)信号,而其相关蛋白TLR2则在其他病原体微生物介导的细胞反应中起作用.TLR4的发现使我们对LPS信号转导通路的认识前进了一大步.  相似文献   

16.
17.
18.
Fimbriae target bacteria to different mucosal surfaces and enhance the inflammatory response at these sites. Inflammation may be triggered by the fimbriae themselves or by fimbriae-dependent delivery of other host activating molecules such as lipopolysaccharide (LPS). Although LPS activates systemic inflammation through the CD14 and Toll-like receptor 4 (TLR4) pathways, mechanisms of epithelial cell activation by LPS are not well understood. These cells lack CD14 receptors and are unresponsive to pure LPS, but fimbriated Escherichia coli overcome this refractoriness and trigger epithelial cytokine responses. We now show that type 1 fimbriae can present an LPS- and TLR4-dependent signal to the CD14-negative epithelial cells. Human uroepithelial cells were shown to express TLR4, and type 1 fimbriated E. coli strains triggered an LPS-dependent response in those cells. A similar LPS- and fimbriae-dependent response was observed in the urinary tract of TLR4-proficient mice, but not in TLR4-defective mice. The moderate inflammatory response in the TLR4-defective mice was fimbriae dependent but LPS independent. The results demonstrate that type 1 fimbriae present LPS to CD14-negative cells and that the TLR4 genotype determines this response despite the absence of CD14 on the target cells. The results illustrate how the host "sees" LPS and other microbial products not as purified molecules but as complexes, and that fimbriae determine the molecular context in which LPS is presented to host cells.  相似文献   

19.
Results from our previous studies demonstrated that activation of Toll-like receptor 4 (Tlr4), the lipopolysaccharide (LPS) receptor, is sufficient to induce nuclear factor kappaB activation and expression of inducible cyclooxygenase (COX-2) in macrophages. Saturated fatty acids (SFAs) acylated in lipid A moiety of LPS are essential for biological activities of LPS. Thus, we determined whether these fatty acids modulate LPS-induced signaling pathways and COX-2 expression in monocyte/macrophage cells (RAW 264.7). Results show that SFAs, but not unsaturated fatty acids (UFAs), induce nuclear factor kappaB activation and expression of COX-2 and other inflammatory markers. This induction is inhibited by a dominant-negative Tlr4. UFAs inhibit COX-2 expression induced by SFAs, constitutively active Tlr4, or LPS. However, UFAs fail to inhibit COX-2 expression induced by activation of signaling components downstream of Tlr4. Together, these results suggest that both SFA-induced COX-2 expression and its inhibition by UFAs are mediated through a common signaling pathway derived from Tlr4. These results represent a novel mechanism by which fatty acids modulate signaling pathways and target gene expression. Furthermore, these results suggest a possibility that propensity of monocyte/macrophage activation is modulated through Tlr4 by different types of free fatty acids, which in turn can be altered by kinds of dietary fat consumed.  相似文献   

20.
IL-1 receptor-associated kinase modulates host responsiveness to endotoxin   总被引:19,自引:0,他引:19  
Endotoxin triggers many of the inflammatory, hemodynamic, and hematological derangements of Gram-negative septic shock. Recent genetic studies in mice have identified the Toll-like receptor 4 as the transmembrane endotoxin signal transducer. The IL-1 intracellular signaling pathway has been implicated in Toll-like receptor signal transduction. LPS-induced activation of the IL-1 receptor-associated kinase (IRAK), and the influence of IRAK on intracellular signaling and cellular responses to endotoxin has not been explored in relevant innate immune cells. We demonstrate that LPS activates IRAK in murine macrophages. IRAK-deficient macrophages, in contrast, are resistant to LPS. Deletion of IRAK disrupts several endotoxin-triggered signaling cascades. Furthermore, macrophages lacking IRAK exhibit impaired LPS-stimulated TNF-alpha production, and IRAK-deficient mice withstand the lethal effects of LPS. These findings, coupled with the critical role for IRAK in IL-1 and IL-18 signal transduction, demonstrate the importance of this kinase and the IL-1/Toll signaling cassette in sensing and responding to Gram-negative infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号