首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain thalassemic human beta-globin pre-mRNAs carry mutations that generate aberrant splice sites and/or activate cryptic splice sites, providing a convenient and clinically relevant system to study splice site selection. Antisense 2'-O-methyl oligoribonucleotides were used to block a number of sequences in these pre-mRNAs and were tested for their ability to inhibit splicing in vitro or to affect the ratio between aberrantly and correctly spliced products. By this approach, it was found that (i) up to 19 nucleotides upstream from the branch point adenosine are involved in proper recognition and functioning of the branch point sequence; (ii) whereas at least 25 nucleotides of exon sequences at both 3' and 5' ends are required for splicing, this requirement does not extend past the 5' splice site sequence of the intron; and (iii) improving the 5' splice site of the internal exon to match the consensus sequence strongly decreases the accessibility of the upstream 3' splice site to antisense 2'-O-methyl oligoribonucleotides. This result most likely reflects changes in the strength of interactions near the 3' splice site in response to improvement of the 5' splice site and further supports the existence of communication between these sites across the exon.  相似文献   

2.
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.  相似文献   

3.
4.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

5.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

6.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

7.
8.
The RNA-binding protein hnRNP A1 is a splicing regulator produced by exclusion of alternative exon 7B from the A1 pre-mRNA. Each intron flanking exon 7B contains a high-affinity A1-binding site. The A1-binding elements promote exon skipping in vivo, activate distal 5' splice site selection in vitro and improve the responsiveness of pre-mRNAs to increases in the concentration of A1. Whereas the glycine-rich C-terminal domain of A1 is not required for binding, it is essential to activate the distal 5' splice site. Because A1 complexes can interact simultaneously with two A1-binding sites, we propose that an interaction between bound A1 proteins facilitates the pairing of distant splice sites. Based on the distribution of putative A1-binding sites in various pre-mRNAs, an A1-mediated change in pre-mRNA conformation may help define the borders of mammalian introns. We also identify an intron element which represses the 3' splice site of exon 7B. The activity of this element is mediated by a factor distinct from A1. Our results suggest that exon 7B skipping results from the concerted action of several intron elements that modulate splice site recognition and pairing.  相似文献   

9.
A single cardiac troponin T (cTNT) gene generates two mRNAs by including or excluding the 30-nucleotide exon 5 during pre-mRNA processing. Transfection analysis of cTNT minigenes has previously demonstrated that both mRNAs are expressed from unmodified minigenes, and mutations within exon 5 can lead to complete skipping of the exon. These results suggested a role for exon sequence in splice site recognition. To investigate this potential role, an in vitro splicing system using cTNT precursors has been established. Two-exon precursors containing the alternative exon and either the upstream exon or downstream exon were spliced accurately and efficiently in vitro. The mutations within the alternative exon that resulted in exon skipping in vivo specifically blocked splicing of the upstream intron in vitro and had no effect on removal of the downstream intron. In addition, the splicing intermediates of these two precursors have been characterized, and the branch sites utilized on the introns flanking the alternative exon have been determined. Potential roles of exon sequence in splice site selection are discussed. These results establish a system that will be useful for the biochemical characterization of the role of exon sequence in splice site selection.  相似文献   

10.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

11.
12.
In vitro splicing of simian virus 40 early pre mRNA.   总被引:19,自引:8,他引:11       下载免费PDF全文
The products of splicing of simian virus 40 early pre mRNA in HeLa cell nuclear extracts have been characterized. Of the two alternative splicing patterns exhibited by this precursor in vivo, which involve the use of alternative large T and small t 5' splice sites and a single shared 3' splice site, only one, producing large T mRNA, was found to occur in vitro. A number of possible intermediates and byproducts of splicing of large T mRNA were observed, including free large T 5' exon, lariat form intron joined to 3' exon and free lariat and linear forms of large T intron. The formation of these products argues strongly for a basic similarity in the mechanism underlying large T and other, non-alternative splices. A collection of RNAs resulting from protection of early pre mRNA at specific points from an endogenous 5' to 3' exonuclease activity in vitro have also been observed. The regions of the precursor RNA protected map to positions immediately upstream of the 5' splice sites of large T and small t and the lariat branchpoint, and may represent interaction of these regions with components of the splicing machinery.  相似文献   

13.
Very small vertebrate exons are problematic for RNA splicing because of the proximity of their 3' and 5' splice sites. In this study, we investigated the recognition of a constitutive 7-nucleotide mini-exon from the troponin I gene that resides quite close to the adjacent upstream exon. The mini-exon failed to be included in spliced RNA when placed in a heterologous gene unless accompanied by the upstream exon. The requirement for the upstream exon disappeared when the mini-exon was internally expanded, suggesting that the splice sites bordering the mini-exon are compatible with those of other constitutive vertebrate exons and that the small size of the exon impaired inclusion. Mutation of the 5' splice site of the natural upstream exon did not result in either exon skipping or activation of a cryptic 5' splice site, the normal vertebrate phenotypes for such mutants. Instead, a spliced RNA accumulated that still contained the upstream intron. In vitro, the mini-exon failed to assemble into spliceosome complexes unless either internally expanded or accompanied by the upstream exon. Thus, impaired usage of the mini-exon in vivo was accompanied by impaired recognition in vitro, and recognition of the mini-exon was facilitated by the presence of the upstream exon in vivo and in vitro. Cumulatively, the atypical in vivo and in vitro properties of the troponin exons suggest a mechanism for the recognition of this mini-exon in which initial recognition of an exon-intron-exon unit is followed by subsequent recognition of the intron.  相似文献   

14.
15.
C Schmelzer  M W Müller 《Cell》1987,51(5):753-762
Deletion or substitution of the branch A residue in group II intron bl1 significantly reduces splicing activity; yet, residual exon ligation is correct, and lariats have their branch points at the normal distance from the 3' end of the intron. Mutations in the sequence facing the branch point also allow residual lariat formation; however, free 3' exons are generated with false 5' termini, all of which are within a UCACA consensus sequence located upstream or downstream of the normal 3' splice site. These results indicate that both the conserved 3' splice site APy and the spatial arrangements in stem 6 are crucial for correct 3' splice site selection.  相似文献   

16.
Exon 7B in the hnRNP A1 pre-mRNA is alternatively spliced to yield A1 and A1(B), two proteins that differ in their ability to modulate 5' splice site selection. Sequencing the murine intron downstream of exon 7B revealed the existence of several regions of similarity to the corresponding human intron. In vitro splicing assays indicate that an 84-nt region (CE6IO) decreases splicing to the proximal 5' splice site in a pre-mRNA carrying the 5' splice sites of exon 7 and 7B. In vivo, the CE6IO element promotes exon 7B skipping in pre-mRNAs expressed from a mini-gene containing the hnRNP A1 alternative splicing unit. Using oligonucleotide-targeted RNase H cleavage assays, we provide support for the existence of highly stable base pairing interactions between CE6IO and the 5' splice site region of exon 7B. Duplex formation occurs in naked pre-mRNA, resists incubation in splicing extracts, and is associated with a reduction in the assembly of U1 snRNP-dependent complexes to the 5' splice site of exon 7B. Our results demonstrate that pre-mRNA secondary structure plays an important role in promoting exon 7B skipping in the A1 pre-mRNA.  相似文献   

17.
In vitro processing of the human growth hormone primary transcript   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

18.
We previously reported that exon skipping in vivo due to point mutations in the 5' splice site (5'ss) signal of an internal mammalian exon can be prevented by coexpression of U1 small nuclear RNAs, termed shift-U1s, with complementarity to sequence upstream or downstream of the mutated site. We now show by S1 nuclease protection experiments that a typical shift-U1 restores splicing of the upstream intron, but not necessarily of the down stream intron. This indicates that the normal 5'ss sequence acts as an enhancer for splicing of the upstream intron, that it owes this activity to base pairing with U1, and that the enhancer activity is reproduced by base pairing of U1 with other sequences in the area. Shift-U1s are dispensable when the 3'ss sequence of the upstream intron is improved, which suggests that base pairing of U1 with sequences at or near the downstream end of the exon normally functions by compensating for a weakness in the upstream 3'ss. Accordingly, U1 appears to be involved in communication across the exon, but our data indicate at the same time that extensive base pairing between U1 and the 5'ss sequence is not necessary for accurate splicing of the downstream intron. These findings are discussed in relation to the coordinate selection exon termini proposed by the exon definition model.  相似文献   

19.
The aminoglycoside antibiotic neomycin B inhibits translation in prokaryotes and interferes with RNA-protein interactions in HIV both in vivo and in vitro. Hitherto, inhibition of ribozyme catalysis has only been observed in vitro. We therefore monitored the activity of neomycin B and several other aminoglycoside antibiotics on splicing of the T4 phage thymidylate synthase (td) intron in vivo. All antibiotics tested inhibited splicing, even chloramphenicol, which does not inhibit splicing in vitro. Splicing of the td intron in vivo requires translation for proper folding of the pre-mRNA. In the absence of translation, two interactions between sequences in the upstream exon and the 5' and 3' splice sites trap the pre-mRNA in splicing-incompetent conformations. Their disruption by mutations rendered splicing less dependent on translation and also less sensitive to neomycin B. Intron splicing was affected by neither neomycin B nor gentamicin in Escherichia coli strains carrying antibiotic-resistance genes that modify the ribosomal RNA. Taken together, this demonstrates that in vivo splicing of td intron is not directly inhibited by aminoglycosides, but rather indirectly by their interference with translation. This was further confirmed by assaying splicing of the Tetrahymena group I intron, which is inserted in the E. coli 23 S rRNA and, thus, not translated. Furthermore, neomycin B, paromomycin, and streptomycin enhanced missplicing in antibiotic-sensitive strains. Missplicing is caused by an alternative structural element containing a cryptic 5' splice site, which serves as a substrate for the ribozyme. Our results demonstrate that aminoglycoside antibiotics display different effects on ribozymes in vivo and in vitro.  相似文献   

20.
The fourth exon of the mouse polymeric immuno-globulin receptor (pIgR) is 654 nt long and, despite being surrounded by large introns, is constitutively spliced into the mRNA. Deletion of an 84 nt sequence from this exon strongly activated both cryptic 5' and 3' splice sites surrounding a 78 nt cryptic intron. The 84 nt deletion is just upstream of the cryptic 3' splice site; the cryptic 3' splice site was likely activated because the deletion created a better 3' splice site. However, the cryptic 5' splice site was also required to activate the cryptic splice reaction; point mutations in either of the cryptic splice sites that decreased their match to the consensus splice site sequence inactivated the cryptic splice reaction. The activation and inactivation of these cryptic splice sites as a pair suggests that they are being co-recognized by the splicing machinery. Interestingly, the large fourth exon of the pIgR gene encodes two immunoglobulin-like extracellular protein domains; the cryptic 3' splice site coincides with the junction between these protein domains. The cryptic 5' splice site is located between protein subdomains where an intron is found in another gene of the immunoglobulin superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号