首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
A cDNA clone was isolated from cotton (Gossypium hirsutum) cDNA library and characterized with regard to its sequence, regulation in response to salt stress and functions in yeast mutants and transgenic tobacco plants. The clone, designated as GhNHX1, contains 2485 nucleotides with an open reading frame of 1629 nucleotides, and the deduced amino acid sequence showed high identities with other plant vacuolar-type Na(+)/H(+) antiporters. Northern blot analysis indicated that the mRNA accumulation of GhNHX1 was strongly induced by salt stress and abscisic acid in cotton seedlings. The expression of GhNHX1 in yeast Na(+)/H(+) antiporter mutant showed function complementation. The transgenic tobacco plants overexpressing GhNHX1 also had higher salt tolerance than the wild-type plants. The salt-induced mRNA level of GhNHX1 was 3 and 7 times higher in the salt-tolerant cotton cultivar ZM3 than those in the salt-sensitive cotton cultivars ZMS17 and ZMS12, respectively. Together, these results suggest that the products of the novel gene, GhNHX1, function as a tonoplast Na(+)/H(+) antiporter and play an important role in salt tolerance of cotton.  相似文献   

4.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

5.
6.
Abiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants. Two genes from wheat encoding two important vacuolar ion transporters, Na(+)/H(+) antiporter (TNHXS1) and H(+)-pyrophosphatase (TVP1), were linked via IRES to generate the bicistronic construct TNHXS1-IRES-TVP1. Molecular analysis of transgenic tobacco plants revealed the correct integration of the TNHXS1-IRES-TVP1construct into tobacco genome and the production of the full-length bicistronic mRNA from the 35S promoter. Ion transport analyses with tonoplast vesicles isolated from transgenic lines confirmed that single-transgenic lines TVP1cl19 and TNHXS1cl7 had greater H(+)-PPiase and Na(+)/H(+) antiport activity, respectively, than the WT. Interestingly, the co-expression of TVP1 and TNHXS1 increased both Na(+)/H(+) antiport and H(+)-PPiase activities and induced the H(+) pumping activity of the endogenous V-ATPase. Transgenic tobacco plants expressing TNHXS1-IRES-TVP1 showed a better performance than either of the single gene-transformed lines and the wild type plants when subjected to salt treatment. In addition, the TNHXS1-IRES-TVP1 transgenic plants accumulated less Na(+) and more K(+) in their leaf tissue than did the wild type and the single gene-transformed lines. These results demonstrate that IRES system, described herein, can co-ordinate the expression of two important abiotic stress-tolerance genes and that this expression system is a valuable tool for obtaining transgenic plants with improved salt tolerance.  相似文献   

7.
In plants, the plasma membrane Na(+)/H(+) antiporter is the only key enzyme that extrudes cytosolic Na(+) and contributes to salt tolerance. But in fungi, the plasma membrane Na(+)/H(+) antiporter and Na(+)-ATPase are known to be key enzymes for salt tolerance. Saccharomyces cerevisiae Ena1p ATPase encoded by the ENA1/PMR2A gene is primarily responsible for Na(+) and Li(+) efflux across the plasma membrane during salt stress and for K(+) efflux at high pH and high K(+). To test if the yeast ATPase would improve salt tolerance in plants, we expressed a triple hemagglutinin (HA)-tagged Ena1p (Ena1p-3HA) in cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The Ena1p-3HA proteins were correctly localized to the plasma membrane of transgenic BY2 cells and conferred increased NaCl and LiCl tolerance to the cells. Under moderate salt stress conditions, the Ena1p-3HA-expressing BY2 clones accumulated lower levels of Na(+) and Li(+) than nonexpressing BY2 clones. Moreover, the Ena1p-3HA expressing BY2 clones accumulated lower levels of K(+) than nonexpressing cells under no-stress conditions. These results suggest that the yeast Ena1p can also function as an alkali-cation (Na(+), Li(+), and K(+)) ATPase and alter alkali-cation homeostasis in plant cells. We conclude that, even with K(+)-ATPase activity, Na(+)-ATPase activity of the yeast Ena1p confers increased salt tolerance to plant cells during salt stress.  相似文献   

8.
9.
Salinity is one of the major abiotic stresses affecting plant productivity. Tomato (Solanum lycopersicum L.), an important and widespread crop in the world, is sensitive to moderate levels of salt in the soil. To generate tomato plants that can adapt to saline soil, AVP1, a vacuolar H(+)-pyrophosphatase gene from Arabidopsis thaliana, and PgNHX1, a vacuolar Na(+)/H(+) antiporter gene from Pennisetum glaucum, were co-expressed by Agrobacterium tumefaciens-mediated transformation. A sample of transformants was self-pollinated, and progeny were evaluated for salt tolerance in vitro and in vivo. It is reported here that co-expression of AVP1 and PgNHX1 confers enhanced salt tolerance to the transformed tomato compared with the AVP1 and PgNHX1 single gene transgenic plants and the wild-type. These transgenic plants grew well in the presence of 200 mM NaCl while wild-type plants exhibited chlorosis and died within 3 weeks. The transgenic line co-expressing AVP1 and PgNHX1 retained more chlorophyll and accumulated 1.4 times more proline as a response to stress than single gene transformants. Moreover, these transgenic plants accumulated a 1.5 times higher Na(+) content in their leaf tissue than the single gene transformants. The toxic effect of Na(+) accumulation in the cytosol is reduced by its sequestration into the vacuole. The physiological analysis of the transgenic lines clearly demonstrates that co-expression of AVP1 and PgNHX1 improved the osmoregulatory capacity of double transgenic lines by enhanced sequestration of ions into the vacuole by increasing the availability of protons and thus alleviating the toxic effect of Na(+).  相似文献   

10.
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted for the homologous protein of yeast to restore tolerance to several toxic cations. To study the ion selectivity of the AtNHX1 protein, we have purified a histidine-tagged version of the protein from yeast microsomes by Ni(2+) affinity chromatography, reconstituted the protein into lipid vesicles, and measured cation-dependent H(+) exchange with the fluorescent pH indicator pyranine. The protein catalyzed Na(+) and K(+) transport with similar affinity in the presence of a pH gradient. Li(+) and Cs(+) ions were also transported with lower affinity. Ion exchange by AtNHX1 was inhibited 70% by the amiloride analog ethylisopropyl-amiloride. Our data indicate a role for intracellular antiporters in organelle pH control and osmoregulation.  相似文献   

11.
The plant NHX gene family encodes Na + /H + antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhx1p, a prevacuole/ vacuolar Na + /H + antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.  相似文献   

12.
Salinity-induced glutathione synthesis in Brassica napus   总被引:7,自引:0,他引:7  
Ruiz JM  Blumwald E 《Planta》2002,214(6):965-969
The role of S-assimilation and the biosynthesis of cysteine and glutathione were studied during the response to salt stress of wild-type and salt-tolerant transgenic Brassica napus L. (canola) plants overexpressing a vacuolar Na+/H+ antiporter. A 3-fold increase in cysteine and glutathione content was observed in wild-type plants exposed to salt stress, but not in the transgenic plants. The induction of cysteine and glutathione synthesis during salt stress in the wild-type plants suggests a possible protective mechanism against salt-induced oxidative damage. On the other hand, the salt-tolerant transgenic plants did not show significant changes in either cysteine or glutathione content, confirming the role of vacuolar Na+ accumulation and ion homeostasis in salt tolerance.  相似文献   

13.
A vacuolar Na /H antiporter cDNA gene was successfully isolated from Hordeum brevisubulatum (Trin.) Link using the rapid amplification of cDNA ends (RACE) method. The gene was named HbNHX1 and was found to consist of 1 916 bp encoding a predicted polypeptide of 540 amino acids with a conserved amiloride-binding domain. Phylogenetic tree analysis of the Na /H antiporters showed that the HbNHX1gene shares 55.3%-74.8% similarity with the vacuolar-type Na /H antiporters. Transgenic tobaccos that contain the HbNHX1 gene, integrated by forward insertion into the tobacco genome, were obtained via Agrobacterium tumerfaciens and characterized for the determination of the concentration of Na and K ions, as well as proline, in the presence of 300 mmol/L NaCl. The T1 transgenic plants showed more tolerance to salt and drought than did wild-type plants. Our data suggest that overexpression of the HbNHX1 gene could improve the tolerance of transgenic tobaccos to salt and drought through the function of the vacuolar Na /H antiporter.  相似文献   

14.
The reddish-purple buds of the wild-type Japanese morning glory (Ipomoea nil) change into blue open flowers, and the shift in the flower coloration correlates with an increase in the vacuolar pH of the flower epidermal cell. In the mutant deficient in the InNHX1 gene for the vacuolar Na(+)/H(+) antiporter, the vacuolar alkalization occurs only partially, and reddish-purple buds become purple open flowers. While most of the plant NHX genes characterized are generally expressed in leaves, stems and roots and induced by NaCl treatment, the InNHX1 gene is expressed predominantly in the flower limbs at around 12 h before flower opening. It is expressed very sparsly in leaves, stems and roots, and no induction occurs in response to NaCl treatment. Here, we identified a novel vacuolar Na(+)/H(+) antiporter gene InNHX2, which is expressed in leaves, stems and roots and is induced in response to NaCl treatment. In addition, relatively higher expression of InNHX2 was observed in the flower limbs shortly before flower opening. We also discovered that both the InNHX1 and InNHX2 proteins can catalyze both Na(+) and K(+) transport into vacuoles. These results suggest that InNHX2 performs dual functions: to confer salt tolerance on the plant and to promote partial vacuolar alkalization in the petals. The implication is that the InNHX2 protein is probably one of the components responsible for converting reddish-purple buds into purple open flowers by partially increasing the vacuolar pH in the absence of major InNHX1 activity.  相似文献   

15.
Sodium transport and salt tolerance in plants   总被引:72,自引:0,他引:72  
The ability of plant cells to maintain low cytosolic sodium concentrations is an essential process associated with the ability of plants to grow in high salt concentrations. Recent results have identified pathways for Na(+) entry, and the cloning of vacuolar Na(+)/H(+) antiporters has demonstrated the role of intracellular Na(+) compartmentation in plant salt tolerance.  相似文献   

16.
Plants pass the salt   总被引:16,自引:0,他引:16  
  相似文献   

17.
Shoots of the halophyte Salicornia bigelovii are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. In glycophytes, sensitivity to salt has been associated with an inability to remove sodium ions effectively from the cytoplasm in order to protect salt-sensitive metabolic processes. Therefore, in Salicornia bigelovii efficient vacuolar sequestration of sodium may be part of the mechanism underlying salt tolerance. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole via a Na(+)/H(+) exchanger. In current studies, increased vacuolar pyrophosphatase activity (hydrolysis of inorganic pyrophosphate and proton translocation) and protein accumulation were observed in Salicornia bigelovii grown in high concentrations of NaCl. Based on sodium-induced dissipation of a pyrophosphate-dependent pH gradient in vacuolar membrane vesicles, a Na(+)/H(+) exchange activity was identified and characterized. This activity is sodium concentration-dependent, specific for sodium and lithium, sensitive to methyl-isobutyl amiloride, and independent of an electrical potential. Vacuolar Na(+)/H(+) exchange activity varied as a function of plant growth in salt. The affinity of the transporter for Na(+) is almost three times higher in plants grown in high levels of salt (K(m)=3.8 and 11.5 mM for plants grown in high and low salt, respectively) suggesting a role for exchange activity in the salt adaptation of Salicornia bigelovii.  相似文献   

18.
Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H(+)-ATPases from leaves and roots. TP Na(+)/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H(+)-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na(+)/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H(+)-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM.  相似文献   

19.
AaNhaD,a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica,encodes a Na+/H+ antiporter crucial for the bacterium’s resistance to salt/alkali stresses.However,it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses.To investigate the use of extremophile genetic resources in higher plants,transgenic tobacco BY-2 cells and plants harboring AaNhaD were generated and their stress tolerance was evaluated.Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner.Compared to wild-type controls,the transgenic cells exhibited increased Na+concentrations and pH levels in the vacuoles.Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts.Similar to the transgenic BY-2 cells,AaNhaD-overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil.These results indicate that AaNhaD functions as a pH-dependent tonoplast Na+/H+antiporter in plant cells,thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.  相似文献   

20.
Qiao WH  Zhao XY  Li W  Luo Y  Zhang XS 《Plant cell reports》2007,26(9):1663-1672
Agropyron elongatum, a species in grass family, has a strong tolerance to salt stress. To study the molecular mechanism of Agropyron elongatum in salt tolerance, we isolated a homolog of Na+/H+ antiporters from the root tissues of Agropyron plants. Sequence analysis revealed that this gene encodes a putative vacuolar Na+/H+ antiporter and was designated as AeNHX1. The AeNHX1–GFP fusion protein was clearly targeted to the vacuolar membrane in a transient transfection assay. Northern analysis indicated that AeNHX1 was expressed in a root-specific manner. Expression of AeNHX1 in yeast Na+/H+ antiporter mutants showed function complementation. Further, overexpression of AeNHX1 promoted salt tolerance of Arabidopsis plants, and improved osmotic adjustment and photosynthesis which might be responsible for normal development of transgenic plants under salt stress. Similarly, AeNHX1 also functioned in transgenic Festuca plants. The results suggest that this gene might function in the roots of Agropyron plants, and its expression is involved in the improvement of salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号