首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic engineering for improved fermentation of pentoses by yeasts   总被引:23,自引:0,他引:23  
The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g–1 sugar consumed, so commercialization seems feasible for some applications.  相似文献   

2.

Background  

Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i) the xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway and ii) the xylose isomerase (XI) pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3). The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate.  相似文献   

3.
Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2μm-based high-copy-number yeast-E. coli shuttle plasmids. In addition to the geneticin resistance and ampicillin resistance genes that serve as dominant selectable markers, these plasmids also contain three xylose-metabolizing genes, a xylose reductase gene, a xylitol dehydrogenase gene (both from Pichia stipitis), and a xylulokinase gene (from Saccharomyces cerevisiae). These xylose-metabolizing genes were also fused to signals controlling gene expression from S. cerevisiae glycolytic genes. Transformation of Saccharomyces sp. strain 1400 with each of these plasmids resulted in the conversion of strain 1400 from a non-xylose-metabolizing yeast to a xylose-metabolizing yeast that can effectively ferment xylose to ethanol and also effectively utilizes xylose for aerobic growth. Furthermore, the resulting recombinant yeasts also have additional extraordinary properties. For example, the synthesis of the xylose-metabolizing enzymes directed by the cloned genes in these recombinant yeasts does not require the presence of xylose for induction, nor is the synthesis repressed by the presence of glucose in the medium. These properties make the recombinant yeasts able to efficiently ferment xylose to ethanol and also able to efficiently coferment glucose and xylose present in the same medium to ethanol simultaneously.  相似文献   

4.
In recombinant, xylose-fermenting Saccharomyces cerevisiae, about 30% of the consumed xylose is converted to xylitol. Xylitol production results from a cofactor imbalance, since xylose reductase uses both NADPH and NADH, while xylitol dehydrogenase uses only NAD+. In this study we increased the ethanol yield and decreased the xylitol yield by lowering the flux through the NADPH-producing pentose phosphate pathway. The pentose phosphate pathway was blocked either by disruption of the GND1 gene, one of the isogenes of 6-phosphogluconate dehydrogenase, or by disruption of the ZWF1 gene, which encodes glucose 6-phosphate dehydrogenase. Decreasing the phosphoglucose isomerase activity by 90% also lowered the pentose phosphate pathway flux. These modifications all resulted in lower xylitol yield and higher ethanol yield than in the control strains. TMB3255, carrying a disruption of ZWF1, gave the highest ethanol yield (0.41 g g−1) and the lowest xylitol yield (0.05 g g−1) reported for a xylose-fermenting recombinant S. cerevisiae strain, but also an 84% lower xylose consumption rate. The low xylose fermentation rate is probably due to limited NADPH-mediated xylose reduction. Metabolic flux modeling of TMB3255 confirmed that the NADPH-producing pentose phosphate pathway was blocked and that xylose reduction was mediated only by NADH, leading to a lower rate of xylose consumption. These results indicate that xylitol production is strongly connected to the flux through the oxidative part of the pentose phosphate pathway.  相似文献   

5.
Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD+/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.  相似文献   

6.
In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.  相似文献   

7.
The activities of xylitol dehydrogenase and xylose reductase in the yeasts Candida shehatae, C. didensiae, C. intermediae, C. tropicalis, Kluyveromyces marxianus, Pichia stipitis, P. guillermondii, Pachysolen tannophilus, and Torulopsis molishiama were studied at different oxygen transfer rates (OTRs) to the fermentation medium (0, 5, and 140 mmol O2/(l h)). The activities of these enzymes were maximum in the yeasts P. stipitis and C. shehatae. The xylitol dehydrogenase of all the yeasts was NAD+-dependent, irrespective of the intensity of aeration. The xylose reductase of the yeasts C. didensiae, C. intermediae, C. tropicalis, Kl. marxianus, P. guillermondii, and T. molishiama was NADPH-dependent, whereas the xylose reductase of P. stipitis, C. shehatae, and Pa. tannophilus was specific for both NADPH and NADH. The effect of OTR on the activities of the different forms of xylitol dehydrogenase and xylose reductase in xylose-assimilating yeasts is discussed.  相似文献   

8.
Xylitol is a five-carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H-dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH-dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH-preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH-generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.  相似文献   

9.
Banerjee  S.  Archana  A.  Satyanarayana  T. 《Current microbiology》1994,29(6):349-352
The thermophilic mouldMalbranchea pulchella var.sulfurea TMD-8 produced extracellular xylanases in wheat straw hemicellulose as well as wheat straw. This mould utilized xylose less efficiently than glucose. Mycelial extracts contained xylose isomerase, xylose reductase, and xylitol dehydrogenase. Xylose isomerase was less thermostable than that from other microorganisms. However, xylitol dehydrogenase and xylose reductase were relatively more thermostable in comparison with these enzymes from other microorganisms. The affinity of xylose isomerase for xylose was very high (Km 10mM), while that of xylose reductase was low (Km 23.5mM). The xylitol dehydrogenase exhibited relatively high affinity for xylitol (Km 0.02mM). The activity of this enzyme, however, declined steeply, in the alkaline range. This is the first report on the occurrence of three intracellular enzymes, xylose isomerase, xylose reductase, and xylitol dehydrogenase in a thermophilic mould, which play an important role in xylose metabolism.  相似文献   

10.
The activities of xylitol dehydrogenase and xylose reductase in the yeasts Candida shehatae, C. didensiae, C. intermediae, C. tropicalis, Kluyveromyces marxianus, Pichia stipitis, P. guillermondii, Pachysolen tannophilus, and Torulopsis molishiama were studied at different oxygen transfer rates (OTRs) to the fermentation medium (0, 5, and 140 mmol O2/(1 h)). The activities of these enzymes were maximum in the yeasts P. stipitis and C. shehatae. The xylitol dehydrogenase of all the yeasts was NAD-dependent, irrespective of the intensity of aeration. The xylose reductase of the yeasts C. didensiae, C. intermediae, C. tropicalis, Kl. marxianus, P. guillermondii, and T. molishiama was NADPH-dependent, whereas the xylose reductase of P. stipitis, C. shehatae, and Pa. tannophilus was specific for both NADPH and NADH. The effect of OTR on the activities of the different forms of xylitol dehydrogenase and xylose reductase in the xylose-assimilating yeasts is discussed.  相似文献   

11.
In this study the ability of various sugars and sugar alcohols to induce aldose reductase (xylose reductase) and xylitol dehydrogenase (xylulose reductase) activities in the yeast Candida tenuis was investigated. Both enzyme activities were induced when the organism was grown on d-xylose or l-arabinose as well as on the structurally related sugars d-arabinose or d-lyxose. Mixtures of d-xylose with the more rapidly metabolizable sugar d-glucose resulted in a decrease in the levels of both enzymes formed. These results show that the utilization of d-xylose by C. tenuis is regulated by induction and catabolite repression. Furthermore, the different patterns of induction on distinct sugars suggest that the synthesis of both enzymes is not under coordinate control.  相似文献   

12.
Fermentation of the pentose sugar xylose to ethanol in lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyces cerevisiae, an efficient ethanol producer, can utilize xylose only when expressing the heterologous genes XYL1 (xylose reductase) and XYL2 (xylitol dehydrogenase). Xylose reductase and xylitol dehydrogenase convert xylose to its isomer xylulose. The gene XKS1 encodes the xylulose-phosphorylating enzyme xylulokinase. In this study, we determined the effect of XKS1 overexpression on two different S. cerevisiae host strains, H158 and CEN.PK, also expressing XYL1 and XYL2. H158 has been previously used as a host strain for the construction of recombinant xylose-utilizing S. cerevisiae strains. CEN.PK is a new strain specifically developed to serve as a host strain for the development of metabolic engineering strategies. Fermentation was carried out in defined and complex media containing a hexose and pentose sugar mixture or a birch wood lignocellulosic hydrolysate. XKS1 overexpression increased the ethanol yield by a factor of 2 and reduced the xylitol yield by 70 to 100% and the final acetate concentrations by 50 to 100%. However, XKS1 overexpression reduced the total xylose consumption by half for CEN.PK and to as little as one-fifth for H158. Yeast extract and peptone partly restored sugar consumption in hydrolysate medium. CEN.PK consumed more xylose but produced more xylitol than H158 and thus gave lower ethanol yields on consumed xylose. The results demonstrate that strain background and modulation of XKS1 expression are important for generating an efficient xylose-fermenting recombinant strain of S. cerevisiae.  相似文献   

13.
Summary The kinetics and enzymology of d-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis cultures of C. utilis did not show fermentation of xylose; in Pa. tannophilus a very low rate of ethanol formation was apparent, whereas with Pi. stipitis rapid fermentation of xylose occurred. The different behaviour of these yeasts ist most probably explained by differences in the nature of the initial steps of xylose metabolism: in C. utilis xylose is metabolized via an NADPH-dependent xylose reductase and an NAD+-linked xylitol dehydrogenase. As a consequence, conversion of xylose to ethanol by C. utilis leads to an overproduction of NADH which blocks metabolic activity in the absence of oxygen. In Pa. tannophilus and Pi. stipitis, however, apart from an NADPH-linked xylose reductase also an NADH-linked xylose reductase was present. Apparently xylose metabolism via the NADH-dependent reductase circumvents the imbalance of the NAD+/NADH redox system, thus allowing fermentation of xylose to ethanol under anaerobic conditions. The finding that the rate of xylose fermentation in Pa. tannophilus and Pi. stipitis corresponds with the activity of the NADH-linked xylose reductase activity is in line with this hypothesis. Furthermore, a comparative study with various xylose-assimilating yeasts showed that significant alcoholic fermentation of xylose only occurred in those organisms which possessed NADH-linked aldose reductase.  相似文献   

14.
15.
Three enzymes responsible for the transhydrogenase-like shunt, including malic enzyme (encoded by MAE1), malate dehydrogenase (MDH2), and pyruvate carboxylase (PYC2), were overexpressed to regulate the redox state in xylose-fermenting recombinant Saccharomyces cerevisiae. The YPH499XU/MAE1 strain was constructed by overexpressing native Mae1p in the YPH499XU strain expressing xylose reductase and xylitol dehydrogenase from Scheffersomyces stipitis, and native xylulokinase. Analysis of the xylose fermentation profile under semi-anaerobic conditions revealed that the ethanol yield in the YPH499XU/MAE1 strain (0.38?±?0.01 g g?1 xylose consumed) was improved from that of the control strain (0.31?±?0.01 g g?1 xylose consumed). Reduced xylitol production was also observed in YPH499XU/MAE1, suggesting that the redox balance was altered by Mae1p overexpression. Analysis of intracellular metabolites showed that the redox imbalance during xylose fermentation was partly relieved in the transformant. The specific ethanol production rate in the YPH499XU/MAE1–MDH2 strain was 1.25-fold higher than that of YPH499XU/MAE1 due to the additional overexpression of Mdh2p, whereas the ethanol yield was identical to that of YPH499XU/MAE1. The specific xylose consumption rate was drastically increased in the YPH499XU/MAE1–MDH2–PYC2 strain. However, poor ethanol yield as well as increased production of xylitol was observed. These results demonstrate that the transhydrogenase function implemented in S. cerevisiae can regulate the redox state of yeast cells.  相似文献   

16.
The activity and the cofactor specificity of xylose reductase and xylitol dehydrogenase were studied in extracts of yeasts from the genera Candida, Kluyveromyces, Pachysolen, Pichia,and Torulopsis grown under microaerobic conditions. It was found that xylitol dehydrogenase in all of the yeast species studied is specific for NAD+; xylose reductase in the xylitol-producing species C. didensiae, C. intermediae, C. parapsilosis, C. silvanorum, C. tropicalis, Kl. fragilis, Kl. marxianus, P. guillermondii, andT. molishiama is specific for NADPH; and xylose reductase in the ethanol-producing species P. stipitis, C. shehatae, and Pa. tannophilus is specific for both NADPH and NADH.  相似文献   

17.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

18.
The absence of pentose-utilizing enzymes in Saccharomyces cerevisiae is an obstacle for efficiently converting lignocellulosic materials to ethanol. In the present study, the genes coding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) from Pichia stipitis were successfully engineered into S. cerevisae. As compared to the control transformant, engineering of XYL1 and XYL2 into yeasts significantly increased the microbial biomass (8.1 vs. 3.4 g/L), xylose consumption rate (0.15 vs. 0.02 g/h) and ethanol yield (6.8 vs. 3.5 g/L) after 72 h fermentation using a xylose-based medium. Interestingly, engineering of XYL1 and XYL2 into yeasts also elevated the ethanol yield from sugarcane bagasse hydrolysate (SUBH). This study not only provides an effective approach to increase the xylose utilization by yeasts, but the results also suggest that production of ethanol by this recombinant yeasts using unconventional nutrient sources, such as components in SUBH deserves further attention in the future.  相似文献   

19.
To investigate the role of xylose uptake in xylose metabolism in yeasts, we isolated a series of mutated strains of the yeast Pichia heedii which are defective in xylose utilization. Four of these demonstrated defects in xylose uptake. Overlaps between the functional or regulatory mechanisms for glucose and xylose uptake may exist in this yeast since some of the mutants defective in xylose uptake were also defective in glucose transport. None of the mutants were defective in xylose reductase or xylitol dehydrogenase activities.  相似文献   

20.
Xylose reductase from the xylose-fermenting yeast Pichia stipitis was purified to electrophoretic and spectral homogeneity via ion-exchange, affinity and high-performance gel chromatography. The enzyme was active with various aldose substrates, such as DL-glyceraldehyde, L-arabinose, D-xylose, D-ribose, D-galactose and D-glucose. Hence the xylose reductase of Pichia stipitis is an aldose reductase (EC 1.1.1.21). Unlike all aldose reductases characterized so far, the enzyme from this yeast was active with both NADPH and NADH as coenzyme. The activity with NADH was approx. 70% of that with NADPH for the various aldose substrates. NADP+ was a potent inhibitor of both the NADPH- and NADH-linked xylose reduction, whereas NAD+ showed strong inhibition only with the NADH-linked reaction. These results are discussed in the context of the possible use of Pichia stipitis and similar yeasts for the anaerobic conversion of xylose into ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号