首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally believed that the activation of various cell surface receptors results in the phospholipase C-catalyzed production of inositol trisphosphate which, in turn, increases the intracellular concentration of free Ca2+ by stimulating its release from nonmitochondrial sources. We have investigated both the production of inositol trisphosphate and changes in intracellular Ca2+ concentration in rat pancreatic acini in response to caerulein and CCK-JMV-180, two analogs of cholecystokinin. Both of these analogs cause comparable increases in the rate of amylase secretion and in intracellular Ca2+ concentration but their effects on inositol phosphate generation are dramatically different; caerulein stimulates significant production of inositol phosphates within 1 min of its addition, whereas no detectable levels of inositol phosphates were generated within the same time after addition of CCK-JMV-180. These results suggest that the CCK-JMV-180 stimulated release of intracellular Ca2+ is not mediated by inositol trisphosphate but some other as yet unidentified messenger.  相似文献   

2.
We have previously shown that inositol trisphosphate (IP3) releases Ca2+ from a nonmitochondrial pool of permeabilized rat pancreatic acinar cells (Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I. (1984) Nature 306, 67-69). This pool was later identified as endoplasmic reticulum (Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F., and Schulz, I. (1984) J. Membr. Biol. 81, 241-253). As IP3 is produced by hydrolysis of phosphatidylinositol bisphosphate on activation of many "Ca2+-mobilizing receptors," our observation supported the proposal that IP3 functions as a second messenger to release Ca2+ from the endoplasmic reticulum. We have here used the same preparation of permeabilized acinar cells to study the relationship of secretagogue-induced Ca2+ release and IP3 production. We show that: 1) secretagogue-induced Ca2+ release in permeabilized cells is accompanied by a parallel production of inositol trisphosphate. 2) When the secretagogue-induced increase in intracellular free Ca2+ concentration was abolished by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid buffering, secretagogue-induced IP3 production was unimpaired. 3) When secretagogue-induced IP3 production was reduced by inhibiting phospholipase C with neomycin, secretagogue-induced Ca2+ release was also abolished. 4) When the IP3 breakdown was reduced either by lowering the free Mg2+ concentration of the incubation medium or by adding 2.3-diphosphoglyceric acid, the rise in IP3 and the release of Ca2+ induced by secretagogues were both increased. These results further support the role of IP3 as a second messenger to induce Ca2+ mobilization.  相似文献   

3.
Ca2+ release from the envelope of isolated pancreatic acinar nuclei could be activated by nicotinic acid adenine dinucleotide phosphate (NAADP) as well as by inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose (cADPR). Each of these agents reduced the Ca2+ concentration inside the nuclear envelope, and this was associated with a transient rise in the nucleoplasmic Ca2+ concentration. NAADP released Ca2+ from the same thapsigargin-sensitive pool as IP3. The NAADP action was specific because, for example, nicotineamide adenine dinucleotide phosphate was ineffective. The Ca2+ release was unaffected by procedures interfering with acidic organelles (bafilomycin, brefeldin, and nigericin). Ryanodine blocked the Ca2+-releasing effects of NAADP, cADPR, and caffeine, but not IP3. Ruthenium red also blocked the NAADP-elicited Ca2+ release. IP3 receptor blockade did not inhibit the Ca2+ release elicited by NAADP or cADPR. The nuclear envelope contains ryanodine and IP3 receptors that can be activated separately and independently; the ryanodine receptors by either NAADP or cADPR, and the IP3 receptors by IP3.  相似文献   

4.
Isolated rabbit pancreatic acinar cells, permeabilized by saponin treatment and incubated in the presence of 0.1 microM free Ca2+, accumulated 3.3 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Part of this energy-dependent pool could be released by GTP in a polyethylene glycol-dependent manner. The kinetics of GTP-induced release of Ca2+ showed a biphasic pattern with an initial rapid phase followed by a sustained slower phase. In contrast, IP3-induced release of Ca2+ was completed within 30 s following addition of IP3. No reuptake of Ca2+ was observed following GTP- or IP3-induced release of Ca2+. The GTP effect was independent of IP3 and not inhibited by Ca2+, indicating that the IP3-operated Ca2+ channel is not involved in GTP-induced release of Ca2+. The size of the IP3-releasable pool was not affected by GTP, indicating that GTP, when added to permeabilized acinar cells, does not promote the coupling between IP3-insensitive and IP3-sensitive Ca2+ accumulating organelles. Thus, in permeabilized acinar cells, GTP and IP3 act on different Ca2+ sequestering pools. Interestingly, however, comparison of the size of the GTP-releasable pool with that of the IP3-releasable pool for the cell preparations used in the present study, revealed an inversed relationship, indicating that at the time of permeabilization the GTP-releasable pool can be coupled to a greater or lesser extent to the IP3-releasable pool. This suggests that, in the intact cell, a GTP-dependent mechanism may exist that controls the size of the IP3-releasable pool by coupling IP3-insensitive to IP3-sensitive organelles. Moreover, this suggests that the extent of coupling is preserved during permeabilization.  相似文献   

5.
The microsomal Ca-ATPase inhibitor thapsigargin induces in rat salivary acinar cells [Ca2+]i oscillations which, though similar to those activated by agonists, are independent of inositol phosphates or inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores (Foskett, J. K., Roifman, C., and Wong, D. (1991) J. Biol. Chem. 266, 2778-2782). To examine whether the oscillation mechanism resides in another, thapsigargin- and IP3-insensitive intracellular store, we examined the effects of caffeine and ryanodine, known modulators of Ca2+ release from sarcoplasmic reticulum in excitable cells. Oscillations were induced by caffeine (1-20 mM) in nonoscillating thapsigargin-treated acinar cells, which required the continued presence of caffeine, whereas caffeine was without effect or reduced oscillation amplitude in oscillating cells. Ryanodine (10-50 microM) inhibited oscillations in most of the cells. These results suggest that Ca2+ oscillations in parotid acinar cells are driven by periodic Ca2+ release from an IP3-insensitive Ca2+ store with properties similar to sarcoplasmic reticulum of excitable cells.  相似文献   

6.
Evidence suggests that GTP but not GTP gamma S activates Ca2+ movement between myo-inositol 1,4,5-trisphosphate (IP3)-sensitive and -insensitive Ca2+ pools (1). Measuring 45Ca2+ uptake into pancreatic microsomal vesicles we have determined the sizes of three different Ca2+ pools which release Ca2+ in response 1) to IP3, 2) to caffeine, and 3) to both IP3 and caffeine ("common" Ca2+ pool). In the presence of GTP the size of the IP3-sensitive Ca2+ pool is decreased whereas the "common" Ca2+ pool is increased as compared to control Ca2+ pool sizes in the presence of GTP gamma S. This effect of GTP is inhibited by bafilomycin B1, a specific inhibitor of vacuolar type H+ ATPases (2). We conclude that GTP induced connection between IP3- and caffeine-sensitive Ca2+ pools is triggered by intravesicular acidification and involves function of small GTP-binding proteins, known to mediate interorganelle transfer.  相似文献   

7.
A transient rise in intracellular Ca2+ during fertilization is necessary for activation of the quiescent sea urchin egg. Several mechanisms contribute to the rise in Ca2+ including influx across the egg plasma membrane and release from intracellular stores. The egg contains both IP3-sensitive and -insensitive Ca2+ release mechanisms and in this study we have used single-cell spectrofluorimetry to examine the effects of caffeine and ryanodine on Ca2+ release in eggs preloaded with fura 2. Caffeine induced a small Ca2+ release that was insensitive to heparin or ruthenium red. Ca2+ liberation by caffeine could be augmented by prior treatment with thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase. Variable Ca2+ releases were observed in response to microinjection of ryanodine. The action of ryanodine appeared to be enhanced by prior injection of heparin and partially inhibited by ruthenium red. The release of Ca2+ by caffeine or ryanodine was generally insufficient to trigger cortical granule exocytosis, thus these eggs could be fertilized and a second Ca2+ release during fertilization was measured. Unlike the caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release mechanism in somatic cells, the graded responses in eggs suggested this caffeine- and ryanodine-sensitive release mechanism is not sensitive to sudden changes in Ca2+. Thus we could examine the combined actions of caffeine and ryanodine on Ca2+ release, which were synergistic. Caffeine treatment of ryanodine-injected eggs or ryanodine injection of caffeine-treated eggs stimulated a Ca2+ release significantly larger than the release by either drug independently. The experiments presented here suggest that sea urchin eggs liberate Ca2+ in response to caffeine and ryanodine; however, the regulation of this release differs from that described for caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release of somatic cells.  相似文献   

8.
Effects of Ca2+ on phosphoinositide breakdown in exocrine pancreas.   总被引:4,自引:3,他引:1       下载免费PDF全文
Recent studies have established that inositol 1,4,5-trisphosphate [I(1,4,5)P3] provides the link between receptor-regulated polyphosphoinositide hydrolysis and mobilization of intracellular Ca2+. Here, we report the effects of Ca2+ on inositol trisphosphate (IP3) formation from phosphatidylinositol bisphosphate (PIP2) catalysed by phospholipase C in intact and electrically permeabilized rat pancreatic acinar cells. In permeabilized cells, the Ca2+-mobilizing agonist caerulein stimulated [3H]IP3 formation when the free [Ca2+] was buffered at 140 nM, the cytosolic free [Ca2+] of unstimulated pancreatic acinar cells. When the free [Ca2+] was reduced to less than 10 nM, caerulein did not stimulate [3H]IP3 formation. Ca2+ in the physiological range stimulated [3H]IP3 formation and reduced the amount of [3H]PIP2 in permeabilized cells. The effects of Ca2+ and the receptor agonist caerulein were additive, but we have not established whether this reflects independent effects on the same or different enzymes. The effect of Ca2+ on [3H]IP3 formation by permeabilized cells was unaffected by inhibitors of the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism; nor were the effects of Ca2+ mimicked by addition of arachidonic acid. These results suggest that the effects of Ca2+ on phospholipase C activity are not a secondary consequence of Ca2+ activation of phospholipase A2. Changes in free [Ca2+] (less than 10 nM-1.2 mM) did not affect the metabolism of exogenous [3H]I(1,4,5)P3 by permeabilized cells. In permeabilized cells, breakdown of exogenous [3H]IP3 to [3H]IP2 (inositol bisphosphate), and formation of [3H]IP3 in response to receptor agonists were equally inhibited by 2,3-bisphosphoglyceric acid. This suggests that the [3H]IP2 formed in response to receptor agonists is entirely derived from [3H]IP3. In intact cells, [3H]IP3 formation was stimulated when ionomycin was used to increase the cytosolic free [Ca2+]. However, a maximal concentration of caerulein elicited ten times as much IP3 formation as did the highest physiologically relevant [Ca2+]. We conclude that the major effect of receptor agonists on IP3 formation does not require an elevation of cytosolic free [Ca2+], although the increase in free [Ca2+] that normally follows IP3 formation may itself have a small stimulatory effect on phospholipase C.  相似文献   

9.
Heparin was found to inhibit the Ca2+ release induced by inositol 1,4,5-trisphosphate (IP3) in permeabilized pancreatic beta-cells obtained from obese hyperglycemic mice. The effect of heparin was dose-dependent and not due to inhibition of Ca2+ uptake into the IP3-sensitive pool. The effect appeared specific for heparin and was not reproduced by other polysaccharides such as chondroitin sulfates. Heparin might consequently be a useful tool when investigating the molecular mechanism whereby IP3 mobilizes Ca2+.  相似文献   

10.
We have previously visualized three Ca2+ transients, generated by release from intracellular stores, which are associated with cytokinesis during the early cell division cycles of zebrafish embryos: the furrow positioning, propagation and deepening transients. Here we demonstrate the requirement of the latter for furrow deepening, and identify the Ca2+ release channels responsible for generating the deepening transient. The introduction of the Ca2+ buffer 5,5'-dibromo-BAPTA, at an appropriate time to challenge only the deepening transient, resulted in the dissipation of this transient and an inhibition of furrow deepening. Introduction of antagonists of the inositol 1,4,5-trisphosphate (IP3) receptor (heparin and 2-aminoethoxydiphenylborate; 2-APB) at the appropriate time, blocked the furrow deepening transient and resulted in an inhibition of furrow deepening. In contrast, antagonists of the ryanodine receptor and the NAADP-sensitive channel had no effect on either the furrow deepening transient or on furrow deepening. In addition, microinjection of IP3 led to the release of calcium from IP3-sensitive stores, whereas the introduction of caffeine or cADPR failed to induce any increase in intracellular Ca2+. Our new data thus support the idea that Ca2+ released via IP3 receptors is essential for generating the furrow deepening transient and demonstrate a requirement for a localized cytosolic Ca2+ riseforthe furrow deepening process. We also present data to show that the endoplasmic reticulum and IP3 receptors are localized on either side of the cleavage furrow, thus providing the intracellular Ca2+ store and release mechanism for generating the deepening transient.  相似文献   

11.
In guinea pig chief cells, inositol 1,4,5-trisphosphate (IP3) caused release of Ca2+, which was accumulated by ATP, from an endoplasmic reticulum-enriched fraction in both the permeable system and the cell-free system. This was mimicked with the Ca2+ ionophores A23187 and ionomycin on a large scale since an IP3-sensitive Ca2+ pool might be a subset of the Ca2+ ionophore-sensitive Ca2+ pool. The permeable chief cells, but not the cell-free system, retained the ability to react to synthetic cholecystokinin octapeptide (CCK-OP) with Ca2+ release from an IP3-sensitive pool due to of the non-additive but constant effect in exerting Ca2+ release from the store(s) induced by the combination with IP3 and CCK-OP. The increase in the cytosolic free Ca2+ concentration of intact chief cells responding to CCK-OP or the Ca2+ ionophore, ionomycin, comprised two components, namely, that by the Ca2+ entry from the extracellular space, and that by the Ca2+ release from the intracellular space(s) (as measured by fura-2). When CCK-OP or ionomycin was added, there was a biphasic response of pepsinogen secretion. An initial but transient response reaching a peak in 5 min was followed by a sustained response reaching a peak in 30 min. The initial pepsinogen release was independent of medium Ca2+, whereas the sustained one was dependent on medium Ca2+. The results suggest that the intracellular Ca2+ release from the store(s), presumably endoplasmic reticulum, may trigger the initial pepsinogen release, whereas the sustained pepsinogen secretion may be caused by acting in concert with the initial response and external Ca2+ entry. On the other hand, the disruption of the microtubular-microfilamentous system by colchicine or cytochalasin D failed to cause the Ca2+ release evoked by either IP3, CCK-OP or Ca2+ ionophores and to cause the CCK-OP- or ionomycin-induced initial pepsinogen release. These findings suggest that the IP3-sensitive pool is the same Ca2+ store which is completely or partially sensitive to CCK-OP and Ca2+ ionophores, respectively, and that the assembly of the cytoskeletal system is involved in initial intracellular Ca2+ metabolism and the following initial pepsinogen release. The assembly of the cytoskeletal system may be an early event in mediating the CCK-OP-induced initial pepsinogen release, perhaps by causing the Ca2+ release from an IP3-sensitive pool of the chief cell. The translocation or attachment of the IP3-sensitive pool brought about by cytoskeletal system might be necessary to cause Ca2+ release after the cell stimulation with CCK-OP.  相似文献   

12.
The characteristics of Ca2+ entry activated by surface receptor agonists and membrane depolarization were studied in the rat pancreatoma cell line, AR4-2J. Ca2+ mobilization activated by substance P, bombesin, or muscarinic receptor stimulation was found to involve both Ca2+ release and entry. In addition, depolarization of the surface membrane of AR4-2J cells with elevated concentrations of K+ activated Ca2+ entry. Ca2+ entry induced by membrane depolarization was inhibited by the L-channel antagonist, nimodipine, while that due to surface receptor agonists was not inhibited by this agent. The microsomal Ca(2+)-ATPase inhibitor, thapsigargin, caused both depletion of the agonist-sensitive intracellular Ca2+ pool and sustained Ca2+ influx indistinguishable from that produced by bombesin or methacholine. These results confirm that, unlike the pancreatic acinar cells from which they are presumably derived, AR4-2J cells express voltage-sensitive, dihydropyridine-inhibitable Ca2+ channels. However, in contrast to previous reports with this cell line, in the AR4-2J cells in use in our laboratory, and under our experimental conditions, surface receptor agonists (including substance P) do not cause Ca2+ influx through voltage-sensitive Ca2+ channels. Instead, we conclude that agonist-activated Ca2+ mobilization is initiated by (1,4,5)IP3-mediated intracellular Ca2+ release and that Ca2+ influx is regulated primarily, if not exclusively, by the state of depletion of the (1,4,5)IP3-sensitive intracellular Ca2+ pool.  相似文献   

13.
Bombesin and cholecystokinin (CCK) peptides act as signalling molecules in both the central nervous system and gastrointestinal tract [1-4]. It was reported recently that nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from mammalian brain microsomes [5] and triggers Ca2+ signals in pancreatic acinar cells, where it is proposed to mediate CCK-evoked Ca2+ signals [6]. Here, for the first time, we have finely resolved bombesin-induced cytosolic Ca2+ oscillations in single pancreatic acinar cells by whole-cell patch-clamp monitoring of Ca2+-dependent ionic currents [6-8]. Picomolar concentrations of bombesin and CCK evoked similar patterns of cytosolic Ca2+ oscillations, but high, desensitising, NAADP concentrations selectively inhibited CCK, but not bombesin-evoked signals. Inhibiting inositol trisphosphate (IP3) receptors with a high concentration of caffeine blocked both types of oscillations. We further tested whether NAADP is involved in Ca2+ signals triggered by activation of the low-affinity CCK receptor sites. Nanomolar concentrations of CCK evoked non-oscillatory Ca2+ signals, which were not affected by desensitising NAADP receptors. Our results suggest that Ca2+-release channels gated by the novel Ca2+-mobilising molecule NAADP are only essential in specific Ca2+-mobilising pathways, whereas the IP3 receptors are generally required for Ca2+ signals. Thus, the same cell may use different combinations of intracellular Ca2+-releasing messengers to encode different external messages.  相似文献   

14.
In pancreatic acinar cells stimulation of different intracellular pathways leads to different patterns of Ca2+ signaling. Bombesin induces activation of both phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phospholipase C (PLC) and phospholipase D (PLD). The latter leads to generation of diacylglycerol (DAG) in addition to that produced by activation of PIP2-PLC. Strong activation of protein kinase C (PKC) results in inhibition of Ca(2+)-induced Ca2+ release from Ca2+ pools arranged in sequence to the luminally located IP3-sensitive Ca2+ pools. Consequently the Ca2+ wave which starts in the luminal cell pole is slower in the presence of bombesin (5 microm/s) as compared to that in the presence of acetylcholine (17 microm/s) which activates PIP2-PLC but not PLD. Activation of high-affinity CCK-receptors triggers a Ca2+ wave with slow propagation (5 microm/s) due to stimulation of phospholipase A2 (PLA2) and generation of arachidonic acid, which in turn leads to inhibition of Ca(2+)-induced Ca2+ release. Low-affinity CCK-receptors are coupled to both PIP2-PLC and PLD.  相似文献   

15.
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.  相似文献   

16.
D-myo-Inositol (1,4,5)-trisphosphate ((1,4,5)IP3)-induced Ca2+ release and subsequent Ca2+ reuptake were investigated in saponin-permeabilized rat parotid acinar cells. Following the rapid release of Ca2+ by (1,4,5)IP3, Ca2+ was resequestered. The sequential addition of submaximal concentrations of (1,4,5)IP3 resulted in sequential Ca2+ release. However, when the cells were challenged with the poorly metabolized (1,4,5)IP3 analogues, (1,4,5)IPS3 or (2,4,5)IP3, or under conditions where the metabolism of authentic (1,4,5)IP3 was reduced, Ca2+ reuptake again occurred, but sequestered Ca2+ was not released by subsequent additions of (1,4,5)IP3. The sequestered Ca2+ was, however, released by thapsigargin, an agent which inhibits active Ca2+ uptake into the (1,4,5)IP3-sensitive pool. Furthermore, the rate of thapsigargin-induced release was significantly increased in the continued presence of an (1,4,5)IP3 stimulus. Thus, Ca2+ reuptake apparently occurred into the (1,4,5)IP3- and thapsigargin-sensitive Ca2+ store and (1,4,5)IP3 continued to influence the permeability of this pool to Ca2+ during Ca2+ reuptake. In contrast to the findings in permeabilized cells, Ca2+ reuptake did not occur in the sustained presence of (1,4,5)IP3 in intact parotid cells. We conclude that cell permeabilization reveals a kinetic, and presumably structural, separation of Ca2+ uptake and release sites within the (1,4,5)IP3-regulated intracellular organelle.  相似文献   

17.
The kinetics of Ca2+ release induced by the second messenger D-myoinositol 1,4,5 trisphosphate (IP3), by the hydrolysis-resistant analogue D-myoinositol 1,4,5 trisphosphorothioate (IPS3), and by micromolar Ca2+ were resolved on a millisecond time scale in the junctional sarcoplasmic reticulum (SR) of rabbit skeletal muscle. The total Ca2+ mobilized by IP3 and IPS3 varied with concentration and with time of exposure. Approximately 5% of the 45Ca2+ passively loaded into the SR was released by 2 microM IPS3 in 150 ms, 10% was released by 10 microM IPS3 in 100 ms, and 20% was released by 50 microM IPS3 in 20 ms. Released 45Ca2+ reached a limiting value of approximately 30% of the original load at a concentration of 10 microM IP3 or 25-50 microM IPS3. Ca(2+)-induced Ca2+ release (CICR) was studied by elevating the extravesicular Ca2+ while maintaining a constant 5-mM intravesicular 45Ca2+. An increase in extravesicular Ca2+ from 7 nM to 10 microM resulted in a release of 55 +/- 7% of the passively loaded 45Ca2+ in 150 ms. CICR was blocked by 5 mM Mg2+ or by 10 microM ruthenium red, but was not blocked by heparin at concentrations as high as 2.5 mg/ml. In contrast, the release produced by IPS3 was not affected by Mg2+ or ruthenium red but was totally inhibited by heparin at concentrations of 2.5 mg/ml or lower. The release produced by 10 microM Ca2+ plus 25 microM IPS3 was similar to that produced by 10 microM Ca2+ alone and suggested that IP3-sensitive channels were present in SR vesicles also containing ruthenium red-sensitive Ca2+ release channels. The junctional SR of rabbit skeletal muscle may thus have two types of intracellular Ca2+ releasing channels displaying fast activation kinetics, namely, IP3-sensitive and Ca(2+)-sensitive channels.  相似文献   

18.
Activation of calcium oscillations by thapsigargin in parotid acinar cells.   总被引:7,自引:0,他引:7  
The tumor promoter thapsigargin releases Ca2+ from intracellular stores by specific inhibition of microsomal Ca-ATPase activity without inositol phosphate formation. Recent studies of the actions of thapsigargin support the concept that the level of Ca2+ within the inositol (1,4,5)-trisphosphate (IP3)-sensitive intracellular pool regulates the Ca2+ permeability of the plasma membrane. We examined the effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) in single rat parotid cells using digital fluorescence microscopy. In the absence of extracellular Ca2+ (Ca2+o), thapsigargin transiently increased [Ca2+]i. Following the thapsigargin-induced [Ca2+]i transient, carbachol in the continued absence of Ca2+o was unable to raise [Ca2+]i, indicating that thapsigargin mobilizes Ca2+ from the IP3-sensitive store. In the converse experiment, carbachol prevented a rise of [Ca2+]i by thapsigargin, suggesting that the IP3- and thapsigargin-sensitive Ca2+ pools are the same. Depletion of Ca2+ from the IP3-sensitive pool by thapsigargin enhanced plasma membrane Ca2+ permeability. Thapsigargin triggered sustained Ca2+ oscillations in Ca2(+)-containing medium which are highly reminiscent of agonist-induced oscillations in these cells. Carbachol addition rapidly raised IP3 levels during oscillations triggered by thapsigargin but did not elevate [Ca2+]i, indicating that the IP3-sensitive pool remains continuously depleted during [Ca2+]i fluctuations. The results from this study rule out the involvement of the IP3-sensitive pool in the mechanisms involved in thapsigargin-induced (and by analogy, agonist-induced) oscillations in parotid cells.  相似文献   

19.
Recent studies have identified inositol 1,4,5-tris-phosphate(InsP3)-sensitive and -insensitive Ca2+ pools and a GTP-dependent mechanism that transfers Ca2+ between them. Here, the Ca2+ pump-inhibitory sesquiterpene lactone, thapsigargin, is shown to distinguish these two Ca2+ pools and identify a third Ca2+ pumping pool unresponsive to InsP3 or GTP. Using saponin-permeabilized DDT1MF-2 smooth muscle cells, approximately 75% of total intracellular ATP-dependent Ca2+ accumulation is blocked by thapsigargin with an IC50 of 30 nM. In contrast, 1 mM vanadate or 5 microM A23187 block 100% of Ca2+ accumulation. The thapsigargin-responsive Ca2+ pool corresponds exactly to that released by 10 microM InsP3 in the presence of 10 microM GTP. Indeed, addition of InsP3 with GTP has no effect on Ca2+ accumulated in the presence of 3 microM thapsigargin whereas A23187 releases all the remaining Ca2+. Added after maximal Ca2+ uptake, thapsigargin induces only slow Ca2+ release consistent with blockade of pumping activity. Unlike InsP3, the action of thapsigargin is entirely heparin insensitive. The large increment in Ca2+ uptake caused by 12 mM oxalate is completely reversed by thapsigargin, indicating that thapsigargin functions on an oxalate-permeable pool. Moreover, the still larger uptake induced by GTP in the presence of oxalate is also completely reversed by either thapsigargin or InsP3. The results indicate that thasigargin blocks Ca2+ uptake into two discrete pools: the InsP3-sensitive, oxalate-permeable Ca2+ pool and the InsP3-insensitive, oxalate-impermeable Ca2+ pool that can be "recruited" into the InsP3-sensitive pool by GTP-dependent Ca2+ translocation (Ghosh, T. K., Mullaney, J.M., Tarazi, F.I., and Gill, D.L. (1989) Nature 340, 236-239). Additionally, a third Ca2+ pool is defined, unreleasable by InsP3 or GTP, and containing a thapsigargin-insensitive Ca2+ pump.  相似文献   

20.
The action of pharmacological drugs (caffeine, procaine, ruthenium red) which influenced the release of Ca2+ from endoplasmatic reticulum, the electrical responses of dog pancreatic acinar cells was investigated using intracellular glass microelectrodes. These drugs were used to elucidate the mechanisms of Ca2+ release from endoplasmatic reticulum. Membrane depolarization and decrease of input resistance were observed in the presence of caffeine. Procaine and ruthenium red suppressed electrical responses of acinar cells to caffeine. The results obtained permit supposing that there are two mechanisms of Ca2+ release from intracellular stores in pancreatic acinar cells: Ca(2+)-induced one and using inositol-1,4,5-triphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号