首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A second major species of leucine tRNA, tRNA Leu UAG (formerly designated tRNA Leu CUA) was purified from baker's yeast in a three-step procedure entailing BD-cellulose chromatography in the presence and absence of Mg2+ and Sephadex G-100 gel filtration. Results of aminoacylation and partial RNase T1 digestion experiments showed that this tRNA retains a native conformation under conditions that denature yeast tRNA Leu m5CAA (tRNA3 Leu). The primary structure of baker's yeast tRNA Leu UAG was elucidated by application of sensitive radioactive isotope derivative ("postlabeling") methods. Complete RNase T1 and A and partial RNase U2 fragments, prepared from non-radioactive tRNA and 5'-half and 3'-half molecules, were separated by two-dimensional polyethyleneimine-cellulose anion-exchange thin-layer chromatography and isolated by a novel micropreparative procedure affording high yields of these compounds in sufficient purity for subsequent tritium derivative analysis. Base composition and sequence of oligonucleotides were analyzed by tritium derivative methods. Molar ratios of the fragments were determined from the radioactivity of 3H-labeled nucleoside trialcohols in combination with base analysis. 2'-O-Methylated guanosine was characterized using the [gamma-32P]ATP/polynucleotide kinase reaction. The analysis of classical complete and partial RNase digests by the tritium derivative methods yielded the complete nucleotide sequence of the tRNA. A total of about 20 A260 units of the RNA was used for analysis, i.e. considerably less material than required for conventional spectrophotometric analysis. A different sequencing approach, consisting of a combination of "readout sequencing" with tritium sequencing of complete RNase T1 and A fragments, was applied to the 3'-half molecule. The 3'-half molecule was labeled with 32P at its 5' terminus, partially degraded with RNase T1, U2, and Phy1 and with alkali, and subjected to polyacrylamide gel electrophoresis. The sequence was read off the gel on the basis of cleavage patterns and size of the fragments. While the readout procedure provided only the positions of A, U, C, and G residues in the chain, additional information from tritium derivative analysis was utilized to define the positions of the modified nucleosides. The readout sequencing procedure was found to require less than 0.01 A260 unit of RNA and the analysis of the complete fragments about 6 A260 units. Interesting structural features of tRNA Leu UAG are (a) the location of unique, leucine tRNA iso-acceptor-specific sequences next to U-8, a constant nucleotide participating in synthetase recognition, (b) the occurrence of 1-methyladenosine in the T loop, a modification not present in the structurally related tRNA Leu m5CAA, and (c) the unusual presence of an unmodified uridine in the first position of the anticodon, which may be related to the unusual coding properties reported for this tRNA.  相似文献   

2.
The oligonucleotides obtained by digestion of tRNA2Leu from cow mammary gland with T1 RNase were separated by micro-column chromatography on DEAE-cellulose in 7 M urea at pH 7,5 and 3,7, and in addition on Dowex 1 x 2. The digest consisted of 18 individual components, the larger being a tridecanucleotide. Micro-column chromatography of nucleotides on anion-exchanger AG 1 x 8 and nucleosides on Aminex A-6 was used to determine the base composition of the oligonucleotides. The oligonucleotide structure was established using terminal analysis, hydrolysis by pancreatic and U2-RNases and incomplete hydrolysis by snake venom phosphodiesterases. The total primary structure of tRNA2Leu was derived from overlapping fragments isolated after its complete hydrolysis with pancreatic and T1 RNase and using data obtained on S1-nuclease digestion of tRNA. The methods of rapid gel-sequencing were also employed for checking the nucleotide sequence of tRNA2Leu from cow mammary gland.  相似文献   

3.
The primary structure of tRNAVal2a from baker's yeast has been determined. The general methods of the investigation are presented. Twenty six distinguished points can be noted in the tRNAVal2a and tRNA1Val from baker's yeast. The anticodon region of tRNAVal2a is represented by the sequence NAC, where N corresponds to a uridine analogue nucleoside of unknown structure. The comparison of primary structures of tRNAVal2a, tRNAVal2a, tRNA1Val from E. coli and tRNAVal2a and tRNA1Val from baker's yeast is analysed.  相似文献   

4.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N(2)-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m(2)G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNA(Arg), tRNA(Phe), and tRNA(Val) yielded significantly more m(2)G than the bulk tRNA. The K(m) for tRNA(Arg) in the methylation reaction with enzymes from either tissue was 7.8 x 10(-7) M as compared to the value 1 x 10(-5) M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNA(Arg), tRNA(Phe), and tRNA(Val), A-m(2)G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5'-end contained in a sequence (s(4))U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

5.
Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNA(Met) binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNA(AAC)(Val) (tRNA(Val*)) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd(-) phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd(-) phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNA(Met) levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd(-) phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5'-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNA(Tyr) that cannot be processed by RNase P had a Gcd(-) phenotype. Interestingly, the Gcd(-) phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Delta cells have a Gcd(-) phenotype. Overproduced PUS4 appears to impede 5'-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNA(Val*) showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNA(Met) binding to the ribosome.  相似文献   

6.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of P-O5' bonds in RNA on the 3' side of pyrimidine to form cyclic 2',5'-phosphates. Even though extensive structural information is available on RNase A complexes with mononucleotides and oligonucleotides, the interaction of RNase A with tRNA has not been fully investigated. We report the complexation of tRNA with RNase A in aqueous solution under physiological conditions, using a constant RNA concentration and various amounts of RNase A. Fourier transform infrared, UV-visible, and circular dichroism spectroscopic methods were used to determine the RNase binding mode, binding constant, sequence preference, and biopolymer secondary structural changes in the RNase-tRNA complexes. Spectroscopic results showed 2 major binding sites for RNase A on tRNA, with an overall binding constant of K = 4.0 x 105 (mol/L)-1. The 2 binding sites were located at the G-C base pairs and the backbone PO2 group. Protein-RNA interaction alters RNase secondary structure, with a major reduction in alpha helix and beta sheets and an increase in the turn and random coil structures, while tRNA remains in the A conformation upon protein interaction. No tRNA digestion was observed upon RNase A complexation.  相似文献   

7.
8.
The amyloid-β peptide (Aβ) is suggested to cause mitochondrial dysfunction in Alzheimer’s disease. The mitochondrial dehydrogenase SDR5C1 (also known as ABAD) was shown to bind Aβ and was proposed to thereby mediate mitochondrial toxicity, but the molecular mechanism has not been clarified. We recently identified SDR5C1 as an essential component of human mitochondrial RNase P and its associated tRNA:m1R9 methyltransferase, the enzymes responsible for tRNA 5′-end processing and methylation of purines at tRNA position 9, respectively. With this work we investigated whether SDR5C1’s role as a subunit of these two tRNA-maturation activities represents the mechanistic link between Aβ and mitochondrial dysfunction. Using recombinant enzyme components, we tested RNase P and methyltransferase activity upon titration of Aβ. Micromolar concentrations of monomeric or oligomerized Aβ were required to inhibit tRNA 5′-end processing and position 9 methylation catalyzed by the SDR5C1-containing enzymes, yet similar concentrations of Aβ also inhibited related RNase P and methyltransferase activities, which do not contain an SDR5C1 homolog. In conclusion, the proposed deleterious effect of Aβ on mitochondrial function cannot be explained by a specific inhibition of mitochondrial RNase P or its tRNA:m1R9 methyltransferase subcomplex, and the molecular mechanism of SDR5C1-mediated Aβ toxicity remains unclear.  相似文献   

9.
The major form of methionine tRNA operational in the elongation of protein synthesis in mouse myeloma cells was purufied from these cells after they had been cultured in the presence of [32P]-phosphate. This [32P]tRNA4-Met species was then digested with T1 RNase or pancreatic RNase so as to obtain both complete and partial RNase digestion products. The nucleotide sequences of these fragments were analysed to enable the derivation of the complete primary structure of this tRNA. tRNA4-Met of mouse myeloma cells is 76 nucleotides in length and contains 15 modified nucleotides. It is the only tRNA yet sequenced which has been found to possess the minor nucleoside 2-methylguanosine (m2G) within the amino acid (a) stem, and also to have an anticodon (c) stem of only 4 and not 5 base-pairs. The loop IV sequence of eukaryotic initiator methionine tRNA (tRNAf-Met) species, -A-U-C-G-m1A-A-A-, IS NOT FOUND IN TRNA4-Met and is therefore absent from at least one of the methionine tRNAs functioning in polypeptide elongation in mammalian cells. This is consistent with the suggested importance of this loop structure in the initiator function of tRNAf-Met in eukaryotic organisms. Three distinct regions of the tRNA cloverleaf, the (b) stem, the anticodon loop (loop II), and loop III, are substantially conserved in structure between tRNAf-Met and tRNA4-Met of mouse myeloma cells. These regions of the structures of mammalian methionine tRNAs probably do not determine whether a certain tRNA-Met will function in the initiation or elongation of protein synthesis, although they might be important in tRNA-Met recognition if the different cytoplasmic tRNA-Met species of mammalian cells are aminoacylated by a single activating enzyme.  相似文献   

10.
Isomer A of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) is a substrate for tRNA nucleotidyltransferase from baker's yeast, whereas isomer B is a competitive inhibitor. The tRNA resulting from this reaction has a phosphorothioate instead of a phosphate diester linkage at the last internucleotidic linkage between cytidine and adenosine. On limited digestion of this tRNA with RNase A, one can isolate cytidine 2',3'-cyclic phosphorothioate which can be deaminated to uridine 2',3'-cyclic phosphorothioate. It can be shown that this compound is the endo isomer and that, therefore, the phosphorothioate diester bond in the tRNA must have had the R configuration. This result indicates that no racemization during the condensation of ATP alpha S, isomer A, onto the tRNA had occurred. Whether inversion or retention of configuration had taken place awaits elucidation of the absolute configuration of isomer A of ATP alpha S.  相似文献   

11.
1.The nucleotide chain of tRNA Cys from baker's yeast was readily split at the anticolon into two large fragments by brief treatment with ribonuclease T1.2. The whole molecule and the two derived large fragments were completely digested with (a) pancreatic ribonuclease and (b) ribonuclease T1. The fragments present in each of the digests were separated and sequenced by conventional methods. 3. The groups of fragments derived from the two methods of digestion were entirely compatible with each other. 4. The molecule is 75 nucleotides long, but, as isolated, lacks the terminal adenosine and the neighboring cytidylic acid residue. The minor nucleotides 1-methyladenylic acid, 7-methylguanylic acid, 5-methylcytidylic acid and N6 (gamma gamma-dimethylallyl)adenylic acid (isopentenyladenylic acid) were identified.  相似文献   

12.
GCN2 is a protein kinase that stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating the alpha subunit of translation initiation factor 2 (eIL-2). We isolated multicopy plasmids that overcome the defective derepression of GCN4 and its target genes caused by the leaky mutation gcn2-507. One class of plasmids contained tRNA(His) genes and conferred efficient suppression only when cells were starved for histidine; these plasmids suppressed a gcn2 deletion much less efficiently than they suppressed gcn2-507. This finding indicates that the reduction in GCN4 expression caused by gcn2-507 can be overcome by elevating tRNA(His) expression under conditions in which the excess tRNA cannot be fully aminoacylated. The second class of suppressor plasmids all carried the same gene encoding a mutant form of tRNA(Val) (AAC) with an A-to-G transition at the 3' encoded nucleotide, a mutation shown previously to reduce aminoacylation of tRNA(Val) in vitro. In contrast to the wild-type tRNA(His) genes, the mutant tRNA(Val) gene efficiently suppressed a gcn2 deletion, and this suppression was independent of the phosphorylation site on eIF-2 alpha (Ser-51). Overexpression of the mutant tRNA(Val) did, however, stimulate GCN4 expression at the translational level. We propose that the multicopy mutant tRNA(Val) construct leads to an accumulation of uncharged tRNA(Val) that derepresses GCN4 translation through a pathway that does not involve GCN2 or eIF-2 alpha phosphorylation. This GCN2-independent pathway was also stimulated to a lesser extent by the multicopy tRNA(His) constructs in histidine-deprived cells. Because the mutant tRNA(Val) exacerbated the slow-growth phenotype associated with eIF-2 alpha hyperphosphorylation by an activated GCN2c kinase, we suggest that the GCN2-independent derepression mechanism involves down-regulation of eIF-2 activity.  相似文献   

13.
14.
Formation of delta-aminolevulinic acid (ALA) from glutamete catalyzed by a soluble extract from the unicellular green alga, Chlorella vulgaris, was abolished after incubation of the cell extract with bovine pancreatic ribonuclease A (RNase). Cell extract was prepared for the ALA formation assay by high-speed centrifugation and gel-filtration through Sephadex G-25 to remove insoluble and endogenous low-molecular-weight components. RNA hydrolysis products did not affect ALA formation, and RNase did not affect the ability of ATP and NADPH to serve as reaction substrates, indicating that the effect of RNase cannot be attributed to degradation of reaction substrates or transformation of a substrate or cofactor into an inhibitor. The effect of RNase was blocked by prior addition of placental RNase inhibitor (RNasin) to the cell extract, but RNasin did not reverse the effect of prior incubation of the cell extract with RNase, indicating that RNase does not act by degrading a component generated during the ALA-forming reaction, but instead degrades an essential component already present in active cell extract at the time the ALA-forming reaction is initiated. After inactivation of the cell extract by incubation with RNase, followed by administration of RNasin to block further RNase action, ALA-forming activity could be restored to a higher level than originally present by addition of a C. vulgaris tRNA-containing fraction isolated from an active ALA-forming preparation by phenol extraction and DEAE-cellulose chromatography. Baker's yeast tRNA, wheat germ tRNA, Escherichia coli tRNA, and E. coli tRNAglu type II were unable to reconstitute ALA-forming activity in RNase-treated cell extract, even though the cell extract was capable of catalyzing the charging of some of these RNAs with glutamate.  相似文献   

15.
Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver   总被引:1,自引:0,他引:1  
A pyrimidine base-specific ribonuclease was purified from bullfrog (Rana catesbeiana) liver by means of CM-cellulose column chromatography and affinity chromatography on heparin-Sepharose CL-6B, which gave single band on SDS-slab electrophoresis. The primary structure of the bullfrog liver RNase was determined. It consisted of 111 amino acid residues, including 8 half-cystine residues. From the sequence, it was concluded that three disulfide bridges in RNase A were conserved in the bullfrog RNase, that a disulfide bridge in RNase A [Cys65-Cys126 (RNase A numbering)] was deleted, and that a new disulfide bridge was created in the C-terminal part of the enzyme. In this frog RNase, the amino acid residues thought to be essential for catalysis in bovine pancreatic RNase A were conserved except for Asp121 (RNase A numbering). The sequence homology of the bullfrog liver RNase with bovine pancreatic RNase A was 30.6%. The sequence of bullfrog liver RNase was very similar to those of lectins obtained from bullfrog egg by Titani et al. [Biochemistry (1988) 26, 2189-2194] and R. japonica egg by Kamiya et al. [Seikagaku (in Japanese) (1989) 60, 733; and personal communication from Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., and Titani, K.]. The sequence homology between the bullfrog liver RNase and the two lectins was 70.2 and 64.8%, respectively.  相似文献   

16.
17.
Ye XY  Ng TB 《Life sciences》2000,67(16):2025-2032
The isolation of a ribonuclease designated lactoribonuclease, with a molecular weight and an N-terminal amino acid sequence identical to those of bovine pancreatic ribonuclease, was first reported from bovine milk. After removal of globulin from acid whey by precipitation with 1.8 M (NH4)2SO4, (NH4)2SO4 was added to attain a concentration of 3.6 M. Adsorption on the ion exchanger CM-Sepharose and subsequently on Mono S by fast protein liquid chromatography yielded pure lactoribonuclease. The enzyme, like pancreatic ribonuclease, was most active at pH 7.5 with yeast transfer RNA (tRNA) as substrate. Lactoribonuclease and pancreatic ribonuclease showed a strong preference for poly(C) over poly(U). However, pancreatic ribonuclease did so with a higher specific activity, suggesting that the two ribonucleases are not identical. No inhibitory effect was shown by either lactoribonuclease or pancreatic ribonuclease toward poly (A) and poly (G). The effect of lactoribonuclease and pancreatic ribonuclease on tRNA increased with the concentration of tRNA. Lactoribonuclease inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC50 of 3.5 nM while the corresponding IC50 for pancreatic ribonuclease was 0.09 nM.  相似文献   

18.
The use of 19F nuclear magnetic resonance (n.m.r.) spectroscopy as a probe of anticodon structure has been extended by investigating the effects of tetranucleotide binding to 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 (anticodon FAC). 19F n.m.r. spectra were obtained in the absence and presence of different concentrations of oligonucleotides having the sequence GpUpApX (X = A,G,C,U), which contain the valine codon GpUpA. Structural changes in the tRNA were monitored via the 5-fluorouracil residues located at positions 33 and 34 in the anticodon loop, as well as in all other loops and stems of the molecule. Binding of GpUpApA, which is complementary to the anticodon and the 5'-adjacent FUra 33, shifts two resonances in the 19F spectrum. One, peak H (3.90 p.p.m.), is also shifted by GpUpA and was previously assigned to FUra 34 at the wobble position of the anticodon. The effects of GpUpApA differ from those of GpUpA in that the tetranucleotide induces the downfield shift of a second resonance, peak F (4.5 p.p.m.), in the 19F spectrum of 19F-labeled tRNA(Val)1. Evidence that the codon-containing oligonucleotides bind to the anticodon was obtained from shifts in the methyl proton spectrum of the 6-methyladenosine residue adjacent to the anticodon and from cleavage of the tRNA at the anticodon by RNase H after binding dGpTpApA, a deoxy analog of the ribonucleotide codon. The association constant for the binding of GpUpApA to fluorinated tRNA(Val)1, obtained by Scatchard analysis of the n.m.r. results, is in good agreement with values obtained by other methods. On the basis of these results, we assign peak F in the 19F n.m.r. spectrum of 19F-labeled tRNA(Val)1 to FUra 33. This assignment and the previous assignment of peak H to FUra 34 are supported by the observation that the intensities of peaks F and H in the 19F spectrum of fluorinated tRNA(Val)1 are specifically decreased after partial hydrolysis with nucleass S1 under conditions leading to cleavage in the anticodon loop. The downfield shift of peak F occurs only with adenosine in the 3'-position of the tetranucleotide; binding of GpUpApG, GpUpApC, or GpUpApU results only in the upfield shift of peak H. The possibility is discussed that this base-specific interaction between the 3'-terminal adenosine and the 5-fluorouracil residue at position 33 involves a 5'-stacked conformation of the anticodon loop. Evidence also is presented for a temperature-dependent conformational change in the anticodon loop below the melting temperature of the tRNA.  相似文献   

19.
A high molecular weight (HMW) fraction of the 150,000 g supernatant of rat brain homogenates contains protein-tRNA complexes which are able to incorporate [3H]Arg and [3H]Lys into tRNA. The aminoacylation of tRNA(Arg) was found to be dependent on ATP and inhibited by RNase. Conversely, the aminoacylation of tRNA(Lys) did not require exogenous ATP and was resistant to RNase and ATPase. In HMW fractions of regenerating rat sciatic nerves, the charging of both tRNA(Arg) and tRNA(Lys) was resistant to RNase and ATPase and did not require exogenous ATP. Because sciatic nerves are rich in axoplasm and tRNAs are known to be present in axons, we tested the hypothesis that degradative enzyme-resistant, ATP-tRNA complexes were of axonal origin. In HMW fractions from rat liver (containing no axons), both tRNA(Arg) and tRNA(Lys) were sensitive to RNase and required exogenous ATP for charging. But, in similar fractions of axoplasm obtained from the giant axon of squid, both tRNAs were insensitive to RNase and ATPase and did not require exogenous ATP for charging. These results suggest that tRNAs in axons are present in protected HMW complexes and contain endogenous stores of ATP. The presence of ATP in the HMW complexes was demonstrated by the luciferase-luciferin assay for ATP. The nature of the protection of tRNAs from RNases was examined by dissociating proteins from HMW complexes by boiling, treating with proteinase K, or overhomogenizing the tissue. These procedures failed to render brain tRNA(Lys) susceptible to RNase. But phenol-extracted, ethanol-precipitated brain tRNA(Lys) was sensitive to RNase, suggesting that the protection of tRNA(Lys) may be by a protease- and heat-resistant polypeptide or by a nonproteinaceous mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号