首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonpathogenic Fusarium oxysporum Fo47b10 combined with Pseudomonas putida WCS358 efficiently suppressed fusarium wilt of carnations grown in soilless culture. This suppression was significantly higher than that obtained by inoculation of either antagonistic microorganism alone. The increased suppression obtained by Fo47b10 combined with WCS358 only occurred when Fo47b10 was introduced at a density high enough (at least 10 times higher than that of the pathogen) to be efficient on its own. P. putida WCS358 had no effect on disease severity when inoculated on its own but significantly improved the control achieved with nonpathogenic F. oxysporum Fo47b10. In contrast, a siderophore-negative mutant of WCS358 had no effect on disease severity even in the presence of Fo47b10. Since the densities of both bacterial strains at the root level were similar, the difference between the wild-type WCS358 and the siderophore-negative mutant with regard to the control of fusarium wilt was related to the production of pseudobactin 358. The production of pseudobactin 358 appeared to be responsible for the increased suppression by Fo47b10 combined with WCS358 relative to that with Fo47b10 alone.  相似文献   

2.
Treatment with Pseudomonas putida WCS358r, a rifampicin‐resistant derivative of strain WCS358, significantly reduced fusarium wilt of carnation grown in rockwool if disease incidence was moderate, but not if disease incidence was high. Differences in disease incidence could intentionally be established by varying the inoculum density of the pathogen Fusarium oxysporum f. sp. dianthi (Fod). The effectiveness of disease suppression by WCS358r increased with decrease of inoculum density and consequently decrease of disease incidence. WCS358r and a Tn5 marked derivative of WCS358 (B243) reduced fusarium wilt of carnation most effectively if a low iron availability for the pathogen was established by adding unferrated or only partially ferrated ethylenediamine [di(o‐hydroxyphenylacetic) acid]. A Tn5 mutant of WCS358 defective in siderophore biosynthesis (JM218) did not reduce disease incidence. Siderophore production and inhibition of Fod by WCS358r in vitro decreased with increasing iron availability, supporting the more effective disease suppression by strains WCS358r and B243 at low iron availability. Siderophore‐mediated competition for iron was shown to be the mechanism of suppression of fusarium wilt of carnation by P. putida WCS358. Its effectivity was highest at a low iron availability and at a moderate disease incidence.  相似文献   

3.
Pseudobactin production by Pseudomonas putida WCS358 significantly improves biological control of fusarium wilt caused by nonpathogenic Fusarium oxysporum Fo47b10 (P. Lemanceau, P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers, Appl. Environ. Microbiol. 58:2978-2982, 1992). The antagonistic effect of Fo47b10 and purified pseudobactin 358 was studied by using an in vitro bioassay. This bioassay allows studies on interactions among nonpathogenic F. oxysporum Fo47b10, pathogenic F. oxysporum f. sp. dianthi WCS816, and purified pseudobactin 358, the fluorescent siderophore produced by P. putida WCS358. Both nonpathogenic and pathogenic F. oxysporum reduced each other's growth when grown together. However, in these coinoculation experiments, pathogenic F. oxysporum WCS816 was relatively more inhibited in its growth than nonpathogenic F. oxysporum Fo47b10. The antagonism of nonpathogenic F. oxysporum against pathogenic F. oxysporum strongly depends on the ratio of nonpathogenic to pathogenic F. oxysporum densities: the higher this ratio, the stronger the antagonism. This fungal antagonism appears to be mainly associated with the competition for glucose. Pseudobactin 358 reduced the growth of both F. oxysporum strains, whereas ferric pseudobactin 358 did not; antagonism by pseudobactin 358 was then related to competition for iron. However, the pathogenic F. oxysporum strain was more sensitive to this antagonism than the nonpathogenic strain. Pseudobactin 358 reduced the efficiency of glucose metabolism by the fungi. These results suggest that pseudobactin 358 increases the intensity of the antagonism of nonpathogenic F. oxysporum Fo47b10 against pathogenic F. oxysporum WCS816 by making WCS816 more sensitive to the glucose competition by Fo47b10.  相似文献   

4.
The influence of the nutrient solution pH on suppression of fusarium wilt by Pseudomonas flurescens WCS417r in carnation grown in rockwool was investigated. Experiments were conducted with carnation cultivars Lena and Pallas, susceptible and moderately resistant to fusarium wilt, respectively. WCS417r significantly reduced fusarium wilt in the susceptible cv. Lena, that was root-inoculated with Fusarium oxysporum f.sp. dianthi (Fod), at pH 7.5, but not at pH 6.5 and 5.5 This corresponded with a higher in vitro siderophore production and antagonism of Fod by WCS417r at pH 7.5 than at pH 6.5 and 5.5. Fusarium wilt in the moderately resistant cv. Pallas, however, was also significantly reduced by treatment with WCS417r at pH 5.5 This corresponded with the low influence of pH on induced resistance by WCS417r in plants of cv. Pallas that were stem-inoculated with Fod. The results indicate that the influence of pH on control of fusarium wilt of carnation by Pseudomonas fluorescens WCS417r differs between carnation cultivars that differ in their level of resistance against fusarium wilt. In susceptible cv. Lena, fusarium wilt is suppressed by antagonism by WCS417r, that is most effective at pH 7.5. In the moderately resistant cv. Pallas, fusarium wilt is suppressed by both antagonism and induced resistance by WCS417r. The latter is also effective at lower pH.  相似文献   

5.
The initial step in the uptake of iron via ferric pseudobactin by the plant-growth-promoting Pseudomonas putida strain WCS358 is binding to a specific outer-membrane protein. The nucleotide sequence of the pupA structural gene, which codes for a ferric pseudobactin receptor, was determined. It contains a single open reading frame which potentially encodes a polypeptide of 819 amino acids, including a putative N-terminal signal sequence of 47 amino acids. Significant homology, concentrated in four boxes, was found with the TonB-dependent receptor proteins of Escherichia coli. The pupA mutant MH100 showed a residual efficiency of 30% in the uptake of 55Fe3+ complexed to pseudobactin 358, whereas the iron uptake of four other pseudobactins was not reduced at all. Cells of strain WCS374 supplemented with the pupA gene of strain WCS358 could transport ferric pseudobactin 358 but showed no affinity for three other pseudobactins. It is concluded that PupA is a specific receptor for ferric pseudobactin 358, and that strain WCS358 produces at least one other receptor for other pseudobactins.  相似文献   

6.
7.
In order to build integrated strains with superior growth-promoting and disease-suppression effects, the biological control efficacy of Fo47 solid agents combined with actinomycetes strains toward Fusarium oxysporum and Verticillium dahliae were investigated in experiments on watermelon, cotton and eggplant. Five actinomycetes strains were prepared by solid fermentation. The count of viable solid agents, initially with propagules at 107–1011 CFU/g, slowly decreased after being stored one year at room temperature. After being inoculated into sterile soil for 50 days, the viable count of strain Fo47 remained at a stable level. The suppressive effects of Fo47 combined with strain QLP12 on Fusarium wilt on watermelon and cotton, and Verticillium wilt on eggplant, reaching 58.47%, 50.73% and 58.82%, respectively. This was significantly better than the single strain Fo47 alone, and growth of these treated plants and the colonisation rate of Fo47 were increased substantially as well. These results indicate that solid integrated agents with a high viability count and superior stability in soil could increase disease suppression and promote plant growth by synergy with different strains. The increased suppression obtained by Fo47 combined with actinomycete strains was not due to a simple addition of different mechanisms of biocontrol agents. By being intelligently integrated, these combinations increase disease suppression and provide the best biocontrol effect.  相似文献   

8.
To investigate the impact of genetically modified, antibiotic-producing rhizobacteria on the indigenous microbial community, Pseudomonas putida WCS358r and two transgenic derivatives were introduced as a seed coating into the rhizosphere of wheat in two consecutive years (1999 and 2000) in the same field plots. The two genetically modified microorganisms (GMMs), WCS358r::phz and WCS358r::phl, constitutively produced phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (DAPG), respectively. The level of introduced bacteria in all treatments decreased from 10(7) CFU per g of roots soon after sowing to less than 10(2) CFU per g after harvest 132 days after sowing. The phz and phl genes remained stable in the chromosome of WCS358r. The amount of PCA produced in the wheat rhizosphere by WCS358r::phz was about 40 ng/g of roots after the first application in 1999. The DAPG-producing GMMs caused a transient shift in the indigenous bacterial and fungal microflora in 1999, as determined by amplified ribosomal DNA restriction analysis. However, after the second application of the GMMs in 2000, no shifts in the bacterial or fungal microflora were detected. To evaluate the importance of the effects induced by the GMMs, these effects were compared with those induced by crop rotation by planting wheat in 1999 followed by potatoes in 2000. No effect of rotation on the microbial community structure was detected. In 2000 all bacteria had a positive effect on plant growth, supposedly due to suppression of deleterious microorganisms. Our research suggests that the natural variability of microbial communities can surpass the effects of GMMs.  相似文献   

9.
10.
11.
The rpoS gene which encodes a stationary phase sigma factor has been identified and characterised from the rhizosphere-colonising plant growth-promoting Pseudomonas putida strain WCS358. The predicted protein sequence has extensive homologies with the RpoS proteins form other bacteria, in particular with the RpoS sigma factors of the fluorescent pseudomonads. A genomic transposon insertion in the rpoS gene was constructed, these mutants were analysed for their ability to produce siderophore (iron-transport agent) and the autoinducer quorum-sensing molecules called homoserine lactones (AHL). It was determined that RpoS was not involved in the regulation of siderophore and AHL production, synthesis of these molecules is important for gene expression at stationary phase. P. putida WCS358 produces at least three different AHL molecules.  相似文献   

12.
Under iron-limited conditions, Pseudomonas putida WCS358 produces a siderophore, pseudobactin 358, which is essential for the plant growth-stimulating ability of this strain. Cells of strain WCS358, provided that they have been grown under Fe3+ limitation, take up 55Fe3+ from the 55Fe3+-labeled pseudobactin 358 complex with Km and Vmax values of 0.23 microM and 0.14 nmol/mg of cell dry weight per min, respectively. Uptake experiments with cells treated with various metabolic inhibitors showed that this Fe3+ uptake process was dependent on the proton motive force. Furthermore, strain WCS358 was shown to be able to take up Fe3+ complexed to the siderophore of another plant-beneficial P. fluorescens strain, WCS374. The tested pathogenic rhizobacteria and rhizofungi were neither able to grow on Fe3+-deficient medium in the presence of pseudobactin 358 nor able to take up 55Fe3+ from 55Fe3+-pseudobactin 358. The same applies for three cyanide-producing Pseudomonas strains which are supposed to be representatives of the minor pathogens. These results indicate that the extraordinary ability of strain WCS358 to compete efficiently for Fe3+ is based on the fact that the pathogenic and deleterious rhizosphere microorganisms, in contrast to strain WCS358 itself, are not able to take up Fe3+ from Fe3+-pseudobactin 358 complexes.  相似文献   

13.
The plant-growth-stimulating Pseudomonas putida WCS358 was mutagenized with transposon Tn5. The resulting mutant colony bank was screened for mutants defective in the biosynthesis of the fluorescent siderophore. A total of 28 mutants, divided into six different classes, were isolated that were nonfluorescent or defective in iron acquisition or both. These different types of mutants together with the probable overall structure of the siderophore, i.e., a small peptide chain attached to a fluorescing group, suggest a biosynthetic pathway in which the synthesis of the fluorescing group is preceded by the synthesis of the peptide part. A gene colony bank of P. putida WCS358 was constructed with the broad-host-range cosmid vector pLAFR1. This genomic library, established in Escherichia coli, was mobilized into the 28 individual mutants, screening for transconjugants restored in fluorescence or growth under iron-limiting conditions or both. A total of 13 cosmids were found to complement 13 distinct mutants. The complementation analysis revealed that at least five gene clusters, with a minimum of seven genes, are needed for siderophore biosynthesis. Some of these genes seem to be arranged in an operon-like structure.  相似文献   

14.
Pseudomonas aeruginosa PNA1, an isolate from chickpea rhizosphere in India, protected pigeonpea and chickpea plants from fusarium wilt disease, which is caused by Fusarium oxysporum f.sp. ciceris and Fusarium udum. Inoculation with strain PNA1 significantly reduced the incidence of fusarium wilt in pigeonpea and chickpea on both susceptible and moderately tolerant genotypes. However, strain PNA1 protected the plants from fusarium wilt until maturity only in moderately tolerant genotypes of pigeonpea and chickpea. Root colonization of pigeonpea and chickpea, which was measured using a lacZ-marked strain of PNA1, showed tenfold lower root colonization of susceptible genotypes than that of moderately tolerant genotypes, indicating that this plant-bacteria interaction could be important for disease suppression in this plant. Strain PNA1 produced two phenazine antibiotics, phenazine-1-carboxylic acid and oxychlororaphin, in vitro. Its Tn5 mutants (FM29 and FM13), which were deficient in phenazine production, caused a reduction or loss of wilt disease suppression in vivo. Hence, phenazine production by PNA1 also contributed to the biocontrol of fusarium wilt diseases in pigeonpea and chickpea.  相似文献   

15.
《Biological Control》2005,32(1):111-120
Bacterial wilt caused by Ralstonia solanacearum race 1, biovar III has become a severe problem in Eucalyptus plantations in south China. The disease mainly attacks young eucalypt trees, and no effective control measures are available yet. To explore possibilities to develop biological control of the disease, strains of fluorescent Pseudomonas spp. that are effective in suppressing plant diseases by known mechanisms, were tested for their potential to control bacterial wilt in Eucalyptus. Pseudomonas putida WCS358r, Pseudomonas fluorescens WCS374r, P. fluorescens WCS417r, and Pseudomonas aeruginosa 7NSK2 antagonize R. solanacearum in vitro by siderophore-mediated competition for iron, whereas inhibition of pathogen growth by P. fluorescens CHA0r is antibiosis-based. No correlations were found between antagonistic activities of these Pseudomonas spp. in vitro and biocontrol of bacterial wilt in Eucalyptus in vivo. None of the strains suppressed disease when mixed together with the pathogen through the soil or when seeds or seedlings were treated with the strains one to four weeks before transfer into soil infested with R. solanacearum. However, when the seedlings were dipped with their roots in a bacterial suspension before transplanting into infested soil, P. fluorescens WCS417r significantly suppressed bacterial wilt. P. putida WCS358r was marginally effective, whereas its siderophore-minus mutant had no effect at all, indicating that siderophore-mediated competition for iron can contribute but is not effective enough to suppress bacterial wilt in Eucalyptus. A derivative of P. putida WCS358r, constitutively producing 2,4-diacetylphloroglucinol (WCS358::phl) reduced disease. Combined treatment with P. fluorescens WCS417r and P. putida WCS358::phl did not improve suppression of bacterial wilt.  相似文献   

16.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

17.
The potential of polymerase chain reaction (PCR) for verifying the identity of colonies stained by the immunofluorescence colony-staining (IFC) procedure was investigated. Using primers directed against conserved sequences of the pectate lyase-genes coding for isozymes PLa, PLd and PLe of Erwinia chrysanthemi , the authors confirmed the identity of 96% of 20 fluorescent target colonies, punched from IFC-stained samples with pure cultures. In pour plates with mixtures of Erw. chrysanthemi and non-target colonies from potato peel extracts, the identity of 90% of 113 target colonies was confirmed.
Using primers directed against sequences of the ferric-pseudobactin receptor gene pupA of Pseudomonas putida WCS358, the identity of 96% of 22 target colonies was confirmed in IFC-stained samples with pure cultures. In pour plates with mixtures of Ps. putida WCS358 and non-target bacteria from compost extracts, the identity of 59% of 108 fluorescent colonies was confirmed by PCR. It was shown that components from non-target bacteria lowered the threshold level of PCR for Ps. putida WCS358  相似文献   

18.
19.
Previously we have shown that flagella and the O-specific polysaccharide of lipopolysaccharide play a role in colonization of the potato root by plant growth-promoting Pseudomonas strains WCS374 and WCS358. In this paper, we describe a novel cell surface-exposed structure in Pseudomonas putida WCS358 examined with a specific monoclonal antibody. This cell surface structure appeared to be a polysaccharide, which was accessible to the monoclonal antibody at the outer cell surface. Further study revealed that it does not contain 2-keto-3-deoxyoctonate, heptose, or lipid A, indicating that it is not a second type of lipopolysaccharide. Instead, the polysaccharide shared some characteristics with K antigen described for Escherichia coli. From a series of 49 different soil bacteria tested, only one other potato plant growth-promoting Pseudomonas strain reacted positively with the monoclonal antibody. Mutant cells lacking the novel antigen were efficiently isolated by an enrichment method involving magnetic antibodies. Mutant strains defective in the novel antigen contained normal lipopolysaccharide. One of these mutants was affected in neither its ability to adhere to sterile potato root pieces nor its ability to colonize potato roots. We conclude that the bacterial cell surface of P. putida WCS358 contains at least two different polysaccharide structures. These are the O-specific polysaccharide of lipopolysaccharide, which is relevant for potato root colonization, and the novel polysaccharide, which is not involved in adhesion to or colonization of the potato root.  相似文献   

20.
In this paper we describe the construction and use in Pseudomonas putida WCS358 of phoE-caa, a novel hybrid marker gene, which allows monitoring both at the protein level by immunological methods and at the DNA level by PCR. The marker is based on the Escherichia coli outer membrane protein gene phoE and 75 bp of E. coli caa, which encode a nonbacteriocinic fragment of colicin A. This fragment contains an epitope which is recognized by monoclonal antibody (MAb) 1C11. As the epitope is contained in one of the cell surface-exposed loops of PhoE, whole cells of bacteria expressing the protein can be detected by using the MAb. The marker gene contains only E. coli sequences not coding for toxins and therefore can be considered environmentally safe. The hybrid PhoE-ColA protein was expressed in E. coli under conditions of phosphate starvation, and single cells could be detected by immunofluorescence microscopy with MAb 1C11. Using a wide-host-range vector the phoE-caa gene was introduced into P. putida WCS358. The gene appeared to be expressed under phosphate limitation in this species, and the gene product was present in the membrane fraction and reacted with MAb 1C11. The hybrid PhoE-ColA protein could be detected on whole cells of WCS358 mutant strains lacking (part of) the O-antigen of the lipopolysaccharide but not on wild-type WCS358 cells, unless these cells had previously been washed with 10 mM EDTA. In addition to immunodetection, the phoE-caa marker gene could be specifically detected by PCR with one primer directed to a part of the phoE sequence and a second primer that annealed to the caa insert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号