首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Qureshi SH  Moza B  Yadav S  Ahmad F 《Biochemistry》2003,42(6):1684-1695
The denaturation of bovine and horse cytochromes-c by weak salt denaturants (LiCl and CaCl(2)) was measured at 25 degrees C by observing changes in molar absorbance at 400 nm (Delta epsilon(400)) and circular dichroism (CD) at 222 and 409 nm. Measurements of Delta epsilon(400) and mean residue ellipticity at 409 nm ([theta](409)) gave a biphasic transition for both modes of denaturation of cytochromes-c. It has been observed that the first denaturation phase, N (native) conformation <--> X (intermediate) conformation and the second denaturation phase, X conformation <--> D (denatured) conformation are reversible. Conformational characterization of the X state by the far-UV CD, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, and intrinsic viscosity measurements led us to conclude that the X state is a molten globule state. Analysis of denaturation transition curves for the stability of different states in terms of Gibbs energy change at pH 6.0 and 25 degrees C led us to conclude that the N state is more stable than the X state by 9.55 +/- 0.32 kcal mol(-1), whereas the X state is more stable than the D state by only 1.40 +/- 0.25 kcal mol(-1). We have also studied the effect of temperature on the equilibria, N conformation <--> X conformation and X conformation <--> D conformation in the presence of different denaturant concentrations using two different optical probes, namely, [theta](222) and Delta epsilon(400). These measurements yielded T(m), (midpoint of denaturation) and Delta H(m) (enthalpy change) at T(m) as a function of denaturant concentration. A plot of Delta H(m) versus corresponding T(m) was used to determine the constant-pressure heat capacity change, Delta C(p) (= ( partial differential Delta H(m)/ partial differential T(m))(p)). Values of Delta C(p) for N conformation <--> X conformation and X conformation <--> D conformation is 0.92 +/- 0.02 kcal mol(-1) K(-1) and 0.41 +/- 0.01 kcal mol(-1) K(-1), respectively. These measurements suggested that about 30% of the hydrophobic groups in the molten globule state are not accessible to the water.  相似文献   

2.
A new method has been developed for determining the stability parameters of proteins from their heat-induced transition curves followed by observation of changes in the far-UV circular dichroism (CD). This method of analysis of the thermal denaturation curve of a protein gave values of stability parameters that not only are identical to those measured by the differential scanning calorimetry (DSC), but also are measured with the same error as that observed with a calorimeter. This conclusion has been reached from our studies of the reversible heat-induced denaturation of lysozyme and ribonuclease A at various pH values. For each protein, the conventional method of analysis of the conformational transition curve, which assumes a linear temperature dependence of the pre- and posttransition baselines, gave the estimate of DeltaH(van)(m) (enthalpy change on denaturation at T(m), the midpoint of denaturation) which is significantly lower than DeltaH(cal)(m), the value obtained from DSC measurements. However, if the analysis of the same denaturation curve assumes that a parabolic function describes the temperature dependence of the pre- and posttransition baselines, there exists an excellent agreement between DeltaH(van)(m) and DeltaH(cal)(m) of the protein. The latter analysis is supported by the far-UV CD measurements of the oxidized ribonuclease A as a function of temperature, for the temperature dependence of this optical property of the protein is indeed nonlinear. Furthermore, it has been observed that, for each protein, the constant-pressure heat capacity change (DeltaC(p)) determined from the plots of DeltaH(van)(m) versus T(m) is independent of the method of analysis of the transition curve.  相似文献   

3.
The denatured states of proteins have always attracted our attention due to the fact that the denatured state is the only experimentally achievable state of a protein, which can be taken as initial reference state for considering the in vitro folding and defining the native protein stability. It is known that heat and guanidinium chloride (GdmCl) give structurally different states of RNase-A, lysozyme, α-chymotrypsinogen A and α-lactalbumin. On the contrary, differential scanning calorimetric (DSC) and isothermal titration calorimetric measurements, reported in the literature, led to the conclusion that heat denatured and GdmCl denatured states are thermodynamically and structurally identical. In order to resolve this controversy, we have measured changes in the far-UV CD (circular dichroism) of these heat-denatured proteins on the addition of different concentrations of GdmCl. The observed sigmoidal curve of each protein was analyzed for Gibbs free energy change in the absence of the denaturant (ΔG 0 X→D) associated with the process heat denatured (X) state ↔ GdmCl denatured (D) state. To confirm that this thermodynamic property represents the property of the protein alone and is not a manifestation of salvation effect, we measured urea-induced denaturation curves of these heat denatured proteins under the same experimental condition in which GdmCl-induced denaturation was carried out. In this paper we report that (a) heat denatured proteins contain secondary structure, and GdmCl (or urea) induces a cooperative transition between X and D states, (b) for each protein at a given pH and temperature, thermodynamic cycle connects quantities, ΔG 0 N→X (native (N) state ↔ X state), ΔG 0 X→D and ΔG 0 N→D (N state ↔ D state), and (c) there is not a good enthalpy difference between X and D states, which is the reason for the absence of endothermic peak in DSC scan for the transition, X state ↔ D state.  相似文献   

4.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

5.
We have recently concluded from the heat-induced denaturation studies that polyols do not affect deltaG(D) degrees (the Gibbs free energy change (deltaG(D)) at 25 degrees C) of ribonuclease-A and lysozyme at physiological pH and temperature, and their stabilizing effect increases with decrease in pH. Since the estimation of deltaG(D) degrees of proteins from heat-induced denaturation curves requires a large extrapolation, the reliability of this procedure for the estimation of deltaG(D) degrees is always questionable, and so are conclusions drawn from such studies. This led us to measure deltaG(D) degrees of ribonuclease-A and lysozyme using a more accurate method, i.e., from their isothermal (25 degrees C) guanidinium chloride (GdmCl)-induced denaturations. We show that our earlier conclusions drawn from heat-induced denaturation studies are correct. Since the extent of unfolding of heat- and GdmCl-induced denatured states of these proteins is not identical, the extent of stabilization of the proteins by polyols against heat and GdmCl denaturations may also differ. We report that in spite of the differences in the structural nature of the heat- and GdmCl-denatured states of each protein, the extent of stabilization by a polyol is same. We also report that the functional dependence of deltaG(D) of proteins in the presence of polyols on denaturant concentration is linear through the full denaturant concentration range. Furthermore, polyols do not affect the secondary and tertiary structures of the native and GdmCl-denatured states.  相似文献   

6.
Chemical denaturants are frequently used to unfold proteins and to characterize mechanisms and transition states of protein folding reactions. The molecular basis of the effect of urea and guanidinium chloride (GdmCl) on polypeptide chains is still not well understood. Models for denaturant--protein interaction include both direct binding and indirect changes in solvent properties. Here we report studies on the effect of urea and GdmCl on the rate constants (k(c)) of end-to-end diffusion in unstructured poly(glycine-serine) chains of different length. Urea and GdmCl both lead to a linear decrease of lnk(c) with denaturant concentration, as observed for the rate constants for protein folding. This suggests that the effect of denaturants on chain dynamics significantly contributes to the denaturant-dependence of folding rate constants for small proteins. We show that this linear dependency is the result of two additive non-linear effects, namely increased solvent viscosity and denaturant binding. The contribution from denaturant binding can be quantitatively described by Schellman's weak binding model with binding constants (K) of 0.62(+/-0.01)M(-1) for GdmCl and 0.26(+/-0.01)M(-1) for urea. In our model peptides the number of binding sites and the effect of a bound denaturant molecule on chain dynamics is identical for urea and GdmCl. The results further identify the polypeptide backbone as the major denaturant binding site and give an upper limit of a few nanoseconds for residence times of denaturant molecules on the polypeptide chain.  相似文献   

7.
Understanding the molecular basis for protein denaturation by urea and guanidinium chloride (GdmCl) should accommodate the observation that, on a molar basis, GdmCl is generally 2-2.5-fold more effective as a protein denaturant than urea. Previous studies [Smith, J. S., and Scholtz, J. M. (1996) Biochemistry 35, 7292-7297] have suggested that the effects of GdmCl on the stability of alanine-based helical peptides can be separated into denaturant and salt effects, since adding equimolar NaCl to urea enhanced urea-induced unfolding to an extent that was close to that of Gdm. We reinvestigated this observation using an alanine-based helical peptide (alahel) that lacks side chain electrostatic contributions to stability, and compared the relative denaturant sensitivities of this peptide with that of tryptophan zipper peptides (trpzip) whose native conformations are stabilized largely by cross-strand indole ring interactions. In contrast to the observations of Smith and Scholtz, GdmCl was only slightly more powerful as a denaturant of alahel than urea in salt-free buffer (the denaturant m value m(GdmCl)/m(urea) ratio = 1.4), and the denaturation of alahel by urea exhibited only a small dependence on NaCl or KCl. The trpzip peptides were much more sensitive to GdmCl than to urea (m(GdmCl)/m(urea) = 3.5-4). These observations indicate that the m(GdmCl)/m(urea) ratio of 2-2.5 for proteins results from a combination of effects on the multiple contributions to protein stability, for which GdmCl may be only slightly more effective than urea (e.g., hydrogen bonds) or considerably more effective than urea (e.g., indole-indole interactions).  相似文献   

8.
9.
Karmodiya K  Surolia N 《Proteins》2008,70(2):528-538
The urea and guanidinium chloride (GdmCl) induced unfolding of FabG, a beta-ketoacyl-ACP reductase of Plasmodium falciparum, was examined in detail using intrinsic fluorescence of FabG, UV-circular dichroism (CD), spectrophotometric enzyme activity measurements, glutaraldehyde cross-linking, and size exclusion chromatography. The equilibrium unfolding of FabG by urea is a multistep process as compared with a two-state process by GdmCl. FabG is fully unfolded at 6.0M urea and 4.0M GdmCl. Approximately 90% of the enzyme activity could be recovered on dialyzing the denaturants, showing that denaturation by both urea and GdmCl is reversible. We found two states in the reversible unfolding process of FabG in presence of NADPH; one is an activity-enhanced state and the other, an inactive state in case of equilibrium unfolding with urea. On the contrary, in presence of NADPH, there is no stabilization of FabG in case of equilibrium unfolding with GdmCl. We hypothesize that the hydrogen-bonding network may be reorganized by the denaturant in the activity-enhanced state formed in presence of 1.0M urea, by interrupting the association between dimer-dimer interface and help in accommodating the larger substrate in the substrate binding tunnel thus, increasing the activity. Furthermore, binding of the active site organizer, NADPH leads to compaction of the FabG in presence of urea, as evident by acrylamide quenching. We have shown here for the first time, the detailed inactivation kinetics of FabG, which have not been evaluated in the past from any of the FabG family of enzymes from any of the other sources. These findings provide impetus for exploring the influences of ligands on the structure-activity relationship of Plasmodium beta-ketoacyl-ACP reductase.  相似文献   

10.
Thermal denaturation curves of ribonuclease-A were measured by monitoring changes in the far-UV circular dichroism (CD) spectra in the presence of different concentrations of six sugars (glucose, fructose, galactose, sucrose, raffinose and stachyose) and mixture of monosaccharide constituents of each oligosaccharide at various pH values in the range of 6.0-2.0. These measurements gave values of T(m) (midpoint of denaturation), DeltaH(m) (enthalpy change at T(m)), DeltaC(p) (constant-pressure heat capacity change) under a given solvent condition. Using these values of DeltaH(m), T(m) and DeltaC(p) in appropriate thermodynamic relations, thermodynamic parameters at 25 degrees C, namely, DeltaG(D)(o) (Gibbs energy change), DeltaH(D)(o) (enthalpy change), and DeltaS(D)(o) (entropy change) were determined at a given pH and concentration of each sugar (including its mixture of monosaccharide constituents). Our main conclusions are: (i) each sugar stabilizes the protein in terms of T(m) and DeltaG(D)(o), and this stabilization is under enthalpic control, (ii) the protein stabilization by the oligosaccharide is significantly less than that by the equimolar concentration of the constituent monosaccharides, and (iii) the stabilization by monosaccharides in a mixture is fully additive. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of protein in their native and denatured states are not perturbed on the addition of sugars.  相似文献   

11.
Although it has been recently shown that unfolded polypeptide chains undergo a collapse on transfer from denaturing to native conditions, the forces determining the dynamics and the size of the collapsed form have not yet been understood. Here, we use single-molecule fluorescence resonance energy transfer experiments on the small protein barstar to characterize the unfolded chain in guanidinium chloride (GdmCl) and urea. The unfolded protein collapses on decreasing the concentration of denaturants. Below the critical concentration of 3.5 M denaturant, the collapse in GdmCl leads to a more dense state than in urea. Since it is known that GdmCl suppresses electrostatic interactions, we infer that Coulomb forces are the dominant forces acting in the unfolded barstar under native conditions. This hypothesis is clearly buttressed by the finding of a compaction of the unfolded barstar by addition of KCl at low urea concentrations.  相似文献   

12.
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.  相似文献   

13.
Hemochromatosis factor E (HFE) is a member of class I MHC family and plays a significant role in the iron homeostasis. Denaturation of HFE induced by guanidinium chloride (GdmCl) was measured by monitoring changes in [θ]222 (mean residue ellipticity at 222 nm), intrinsic fluorescence emission intensity at 346 nm (F346) and the difference absorption coefficient at 287 nm (Δε287) at pH 8.0 and 25°C. Coincidence of denaturation curves of these optical properties suggests that GdmCl‐induced denaturation (native (N) state ? denatured (D) state) is a two‐state process. The GdmCl‐induced denaturation was found reversible in the entire concentration range of the denaturant. All denaturation curves were analyzed for , Gibbs free energy change associated with the denaturation equilibrium (N state ? D state) in the absence of GdmCl, which is a measure of HFE stability. We further performed molecular dynamics simulation for 40 ns to see the effect of GdmCl on the structural stability of HFE. A well defined correlation was established between in vitro and in silico studies. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 133–142, 2016.  相似文献   

14.
The denatured states of a small globular protein, apo-neocarzinostatin (NCS), have been characterized using several techniques. Structural properties were investigated by optical spectroscopy techniques and small-angle neutron scattering (SANS), as a function of guanidinium chloride (GdmCl) concentration. SANS experiments show that in heavy water, the protein keeps its native size at GdmCl concentrations below 2.5 M. A sharp transition occurs at about 3.6 M GdmCl, and NCS behaves like an excluded volume chain above 5 M. The same behavior is observed in deuterated buffer by fluorescence and circular dichroism measurements. For the H(2)O buffer, the transition occurs with lower concentration of denaturant, the shift being about 0.6 M. 8-Anilino-1-naphthalenesulfonate (ANS) was used as a hydrophobic fluorescent probe for studying the early stages of protein unfolding. Protein denaturation modifies the fluorescence intensity of ANS, a maximum of intensity being detected close to 2 M GdmCl in hydrogenated buffer, which shows the existence of at least one intermediate state populated at the beginning of the unfolding pathway. Differential scanning calorimetry (DSC) was used to obtain thermodynamic values for NCS denaturation. The melting curves recorded between 20 and 90 degrees C in the presence of various GdmCl concentrations (0-3 M) cannot be explained by a simple two-state model. Altogether, the data presented in this paper suggest that before unfolding the protein explores a distribution of states which is centered around compact states at denaturant concentrations below 2 M in H(2)O, and then shifts to less structured states by increasing denaturant concentrations.  相似文献   

15.
We have determined the sequence of mitochondrial cytochrome c (cyt-c) from the goat heart, and it was found to have a unique amino acid sequence among all amino acid sequences of cyt-c reported till date. Its sequence alignment with the bovine cytochrome c (b-cyt-c) led us to conclude that the goat cytochrome c (g-cyt-c) differs in amino acid sequence from b-cyt-c at only one position, i.e., Pro44(bovine) --> Ala44(goat). It has been observed that guanidinium chloride (GdmCl) induces a two-state transition between the native (N) and denatured (D) states of g-cyt-c. This conclusion is reached from the coincidence of GdmCl-induced transition curves monitored by measurements of absorbance at 405, 530 and 695 nm and circular dichroism (CD) at 222, 416 and 405 nm. Analysis of denaturation curves for the Gibbs energy of stabilization suggests that the stability of g-cyt-c is, within experimental errors, identical to that of b-cyt-c. We have also measured the effect of temperature on the equilibrium, N state <--> D state of g-cyt-c in the presence of different GdmCl concentrations. These measurements gave values of transition temperature (T(m)), changes in enthalpy (DeltaH(m)) and heat capacity (DeltaC(p)) of g-cyt-c in the absence of GdmCl, which are compared with those of b-cyt-c. We have used crystal structure coordinates of b-cyt-c to predict the structure and stability of g-cyt-c, which are compared with those of the bovine protein.  相似文献   

16.
Henkels CH  Oas TG 《Biochemistry》2005,44(39):13014-13026
In Bacillus subtilis, P protein is the noncatalytic component of ribonuclease P (RNase P) that is critical for achieving maximal nuclease activity under physiological conditions. P protein is predominantly unfolded (D) at neutral pH and low ionic strength; however, it folds upon the addition of sulfate anions (ligands) as well as the osmolyte trimethylamine N-oxide (TMAO) [Henkels, C. H., Kurz, J. C., Fierke, C. A., and Oas, T. G. (2001) Biochemistry 40, 2777-2789]. Since the molecular mechanisms that drive protein folding for these two solutes are different, CD thermal denaturation studies were employed to dissect the thermodynamics of protein unfolding from the two folded states. A global fit of the free-energy of TMAO-folded P protein versus [TMAO] and temperature yields T(S), DeltaH(S), and DeltaC(p) of unfolding for the poorly populated, unliganded, folded state (N) in the absence of TMAO. These thermodynamic parameters were used in the fit of the data from the coupled unfolding/ligand dissociation reaction to obtain the sulfate dissociation constant (K(d)) and the DeltaH and DeltaC(p) of dissociation. These fits yielded a DeltaC(p) of protein unfolding of 826 +/- 23 cal mol(-)(1) K(-)(1) and a DeltaC(p) of 1554 +/- 29 cal mol(-)(1) K(-)(1) for the coupled unfolding and dissociation reaction (NL(2) --> D + 2L). The apparent stoichiometry of sulfate binding is two, so the DeltaC(p) increment of ligand dissociation is 363 +/- 9 cal mol(-)(1) K(-)(1) per site. Because N and NL(2) appear to be structurally similar and therefore similarly solvated using standard biophysical analyses, we attribute a substantial portion of this DeltaC(p) increment to an increase in conformational heterogeneity coincident with the NL(2) --> N + 2L transition.  相似文献   

17.
The balance between stabilizing forces and the localized electrostatic repulsions destabilizing the transthyretin (TTR) tetramer is tunable via anion shielding. The two symmetrical anion interaction sites in TTR are comprised of residues Lys15 and Lys15' from opposing subunits on the periphery of the two thyroxine binding sites. These epsilon-ammonium groups repel one another and destabilize the tetramer, unless an appropriate anion is present, which stabilizes the tetramer. Chaotrope denaturation of TTR exhibits unusual behavior in that urea appears to be a stronger denaturant than GdmCl (guanidinium chloride), even though GdmCl is typically twice as powerful as a denaturant. The shift in the midpoint of the urea denaturation curve to higher concentrations as well as the increase in the mole fraction of tetramer that is highly resistant to denaturation with increasing KCl concentration provides strong evidence that anion shielding stabilizes the TTR tetramer. A consequence of tetramer stabilization is folding hysteresis, because the high GdmCl concentrations required to denature the anion-stabilized tetramer do not allow refolding of the unfolded monomers. The formation of amyloid fibrils by TTR requires that its normal tetrameric structure dissociate to alternatively folded monomers, a process mediated by acidification (pH 5-4). This process is inhibited by Cl(-) ions in a concentration-dependent fashion. Chloride ion may not be the relevant physiological TTR stability modulator, but it is the main focus of these studies explaining the hysteresis observed in the denaturation and refolding studies with GdmCl.  相似文献   

18.
We have carried out equilibrium studies of the effect of the amino acid residue difference in the primary structure of bovine cytochrome-c (b-cyt-c) and horse cyt-c (h-cyt-c) on the mechanism of their folding <--> unfolding processes at pH 6.0 and 25 degrees C. It has been observed that guanidinium chloride (GdmCl)-induced denaturation of b-cyt-c follows a two-state mechanism and that of h-cyt-c is not a two-state process. This conclusion is reached from the coincidence and non-coincidence of GdmCl-induced transition curves of bovine and horse proteins, respectively, monitored by measurements of absorbance at 405, 530 and 695 nm and circular dichroism (CD) at 222, 416 and 405 nm. These measurements on h-cyt-c in the presence of GdmCl in the concentration range 0.75-2.0 M also suggest that the protein retains all the native far-UV CD but has slightly perturbed tertiary interaction. The intermediate in the presence of these low denaturant concentrations does not have the structural characteristics of a molten globule as judged by the 8-Anilino-1-napthalene sulfonic acid (ANS) binding and near-UV CD experiments. We have also carried out thermal denaturation studies of bovine and horse cyts-c in the presence of GdmCl monitored by absorbance at 405 nm and far-UV CD at 222 nm. The heat-induced denaturation measurements in the presence of the denaturant show (1) that denaturation of b-cyt-c is a two-state process and that of h-cyt-c does not follow a two-state mechanism, and (2) that the enthalpy change on denaturation of both proteins strongly depends on GdmCl concentration.  相似文献   

19.
The cytosolic malic enzyme from the pigeon liver is sensitive to chemical denaturant urea. When monitored by protein intrinsic fluorescence or circular dichroism spectral changes, an unfolding of the enzyme in urea at 25 degrees C and pH 7.4 revealed a biphasic phenomenon with an intermediate state detected at 4-5 m urea. The enzyme activity was activated by urea up to 1 m but was completely lost before the intermediate state was detected. This suggests that the active site region of the enzyme was more sensitive to chemical denaturant than other structural scaffolds. In the presence of 4 mm Mn(2+), the urea denaturation pattern of malic enzyme changed to monophasic. Mn(2+) helped the enzyme to resist phase I urea denaturation. The [urea](0.5) for the enzyme inactivation shifted from 2.2 to 3.8 m. Molecular weight determined by the analytical ultracentrifuge indicated that the tetrameric enzyme was dissociated to dimers in the early stage of phase I denaturation. In the intermediate state at 4-5 m urea, the enzyme showed polymerization. However, the polymer forms were dissociated to unfolded monomers at a urea concentration greater than 6 m. Mn(2+) retarded the polymerization of the malic enzyme. Three mutants of the enzyme with a defective metal ligand (E234Q, D235N, E234Q/D235N) were cloned and purified to homogeneity. These mutant malic enzymes showed a biphasic urea denaturation pattern in the absence or presence of Mn(2+). These results indicate that the Mn(2+) has dual roles in the malic enzyme. The metal ion not only plays a catalytic role in stabilization of the reaction intermediate, enol-pyruvate, but also stabilizes the overall tetrameric protein architecture.  相似文献   

20.
Calorimetric measurements of absolute heat capacity have been performed for hydrated (11)S-globulin (0 < C(H(2)O) < 25%) and for lysozyme in a concentrated solution, both in the native and denatured states. The denaturation process is observed in hydrated and completely anhydrous proteins; it is accompanied by the appearance of heat capacity increment (Delta(N)(D)C(p)), as is the case for protein solutions. It has been shown that, depending on the temperature and water content, the hydrated denatured proteins can be in a highly elastic or glassy states. Glass transition is also observed in hydrated native proteins. It is found that the denaturation increment Delta(N)(D)C(p) in native protein, like the increment DeltaC(p) in denatured protein in glass transition at low water contents, is due to additional degrees of freedom of thermal motion in the protein globule. In contrast to the conventional notion, comparison of absolute C(p) values for hydrated denatured proteins with the C(p) values for denatured proteins in solution has indicated a dominant contribution of the globule thermal motion to the denaturation increment of protein heat capacity in solutions. The concentration dependence of denaturing heat absorption (temperature at its maximum, T(D), and thermal effect, DeltaQ(D)) and that of glass transition temperature, T(g), for (11)S-globulin have been studied in a wide range of water contents. General polymeric and specific protein features of these dependencies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号