首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. METHODS: The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. KEY RESULTS: LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. CONCLUSIONS: In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted.  相似文献   

2.
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28-ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12-MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA-ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14-ARF7-ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14-ARF7-ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3-ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14-ARF7-ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA-ARF modules cooperatively regulate the developmental steps during LR formation.  相似文献   

3.
Root system architecture depends on lateral root (LR) initiation that takes place in a relatively narrow developmental window (DW). Here, we analyzed the role of auxin gradients established along the parent root in defining this DW for LR initiation. Correlations between auxin distribution and response, and spatiotemporal control of LR initiation were analyzed in Arabidopsis thaliana and tomato (Solanum lycopersicum). In both Arabidopsis and tomato roots, a well defined zone, where auxin content and response are minimal, demarcates the position of a DW for founder cell specification and LR initiation. We show that in the zone of auxin minimum pericycle cells have highest probability to become founder cells and that auxin perception via the TIR1/AFB pathway, and polar auxin transport, are essential for the establishment of this zone. Altogether, this study reveals that the same morphogen-like molecule, auxin, can act simultaneously as a morphogenetic trigger of LR founder cell identity and as a gradient-dependent signal defining positioning of the founder cell specification. This auxin minimum zone might represent an important control mechanism ensuring the LR initiation steadiness and the acropetal LR initiation pattern.  相似文献   

4.
The formation of lateral roots (LRs) is a key driver of root system architecture and developmental plasticity. The first stage of LR formation, which leads to the acquisition of founder cell identity in the pericycle, is the primary determinant of root branching patterns. The fact that initiation events occur asynchronously in a very small number of cells inside the parent root has been a major difficulty in the study of the molecular regulation of branching patterns. Inducible systems that trigger synchronous lateral formation at predictable sites have proven extremely valuable in Arabidopsis to decipher the first steps of LR formation. Here, we present a LR repression system for cereals that relies on a transient water-deficit treatment, which blocks LR initiation before the first formative divisions. Using a time-lapse approach, we analysed the dynamics of this repression along growing roots and were able to show that it targets a very narrow developmental window of the initiation process. Interestingly, the repression can be exploited to obtain negative control root samples where LR initiation is absent. This system could be instrumental in the analysis of the molecular basis of drought-responsive as well as intrinsic pathways of LR formation in cereals.  相似文献   

5.
Li X  Mo X  Shou H  Wu P 《Plant & cell physiology》2006,47(8):1112-1123
In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.  相似文献   

6.
7.
Research in lateral root (LR) development mainly focuses on the role of auxin. This article reports the effect of cytokinins (kinetin and trans-zeatin) on LR formation in rice (Oryza sativa L.). Our results showed that cytokinin has an inhibitory effect on LR initiation and stimulatory effect on LR elongation. Both KIN and ZEA at a concentration of 1 microM and above completely inhibited lateral root primordium (LRP) formation. The inhibitory effect of cytokinin on LR initiation required a continuous presence of KIN or ZEA in the growth solution. Cytokinin did not show any inhibitory effect on LR emergence from the seminal root once LRPs had been formed. The LRPs that developed in cytokinin-free solution can emerge normally in the solution containing inhibitory concentration (1 microM) of KIN and ZEA. The KIN and ZEA treatment dramatically stimulated LR elongation at all the concentrations tested. Maximum LR elongation was observed at a concentration of 0.01 microM KIN and 0.001 microM ZEA. The epidermal cell length increased significantly in LRs of cytokinin treated seedlings compared to those of untreated control. This result indicates that the stimulation of LR elongation by cytokinin is due to increased cell length. Exogenously applied auxin counteracted the effect of cytokinin on LR initiation and LR elongation, suggesting that cytokinin acts on LR elongation through an auxin dependent pathway.  相似文献   

8.
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)–AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28–ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14–ARF7–ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12–MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA–ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14–ARF7–ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14–ARF7–ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3–ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14–ARF7–ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA–ARF modules cooperatively regulate the developmental steps during LR formation.  相似文献   

9.
The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates primordia emergence through increased accumulation of auxin or change in sensitivity to auxin in the primordia. Both the strong effect of 2,3,5-triiodobenzoic acid and the phenotype of the auxin-transport mutants (aux1, eir1) suggest that low P availability modifies local auxin concentrations within the root system through changes in auxin transport rather than auxin synthesis.  相似文献   

10.
11.
12.
13.
Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis.1 Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence.  相似文献   

14.
15.
16.
The homosporous fern Ceratopteris richardii exhibits a homorhizic root system where roots originate from the shoot system. These shoot-borne roots form lateral roots (LRs) that arise from the endodermis adjacent to the xylem poles, which is in contrast to flowering plants where LR formation arises from cell division in the pericycle. A detailed study of the fifth shoot-borne root showed that one lateral root mother cell (LRMC) develops in each two out of three successive merophytes. As a result, LRs emerge alternately in two ranks from opposite positions on a parent root. From LRMC initiation to LR emergence, three developmental stages were identified based on anatomical criteria. The addition of auxins (either indole-3-acetic acid or indole-3-butyric acid) to the growth media did not induce additional LR formation, but exogenous applications of both auxins inhibited parent root growth rate. Application of the polar auxin-transport inhibitor N-(1-naphthyl)phthalamic acid (NPA) also inhibited parent root growth without changing the LR initiation pattern. The results suggest that LR formation does not depend on root growth rate per se. The result that exogenous auxins do not promote LR formation in C. richardii is similar to reports for certain species of flowering plants, in which there is an acropetal LR population and the formation of the LRs is insensitive to the application of auxins. It also may indicate that different mechanisms control LR development in non-seed vascular plants compared with angiosperms, taking into consideration the long and independent evolutionary history of the two groups.  相似文献   

17.
18.
Lateral root formation is profoundly affected by auxins. Here we present data which indicate that light influences the formation of indole-3-acetic acid (IAA) in germinating Arabidopsis seedlings. IAA transported from the developing leaves to the root system is detectable as a short-lived pulse in the roots and is required for the emergence of the lateral root primordia (LRP) during early seedling development. LRP emergence is inhibited by the removal of apical tissues prior to detection of the IAA pulse in the root, but this treatment has minimal effects on LRP initiation. Our results identify the first developing true leaves as the most likely source for the IAA required for the first emergence of the LRP, as removal of cotyledons has only a minor effect on LRP emergence in contrast to removal of the leaves. A basipetal IAA concentration gradient with high levels of IAA in the root tip appears to control LRP initiation, in contrast to their emergence. A significant increase in the ability of the root system to synthesize IAA is observed 10 days after germination, and this in turn is reflected in the reduced dependence of the lateral root emergence on aerial tissue-derived auxin at this stage. We propose a model for lateral root formation during early seedling development that can be divided into two phases: (i) an LRP initiation phase dependent on a root tip-localized IAA source, and (ii) an LRP emergence phase dependent on leaf-derived IAA up to 10 days after germination.  相似文献   

19.
A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development.Key words: ammonium, root, auxin, AUX1, ABA, shoot-derived signal  相似文献   

20.
Deposition of ammonium (NH4+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4+ is well studied, little is known about how shoot‐supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin‐responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN‐FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1‐dependent auxin transport from shoot to root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号