首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ketamine (2-(2-chlorophenyl)-(1-methylamino)-cyclohexanone) is a rapid-acting dissociative general anaesthetic whose hallucinogenic properties have made it a popular drug of abuse. Ketamine comprises two optical isomers, with differing pharmacology. In the present study, the effects of (+)- and (-)-ketamine on stimulated efflux and reuptake of dopamine (DA), noradrenaline (NA) and serotonin (5-HT) were compared in isolated superfused slices of the rat caudatoputamen (CPu), ventral bed nucleus of the stria terminalis (BSTV) or dorsal raphe nucleus (DRN), respectively. Monoamine efflux was elicited by local electrical stimulation (20 pulses, 100 Hz trains) at tungsten microelectrodes and measured at adjacent carbon fibre microelectrodes using fast cyclic voltammetry (FCV). In CPu (+)-ketamine increased stimulated DA efflux and slowed DA reuptake in a concentration-dependent manner (25-200 microM). At 100 microM (+)-ketamine increased DA efflux by 109+/-20% (mean+/-S.E.M., n=13) of control values after 30 min (P<0.001 versus control) and prolonged uptake half-time (t(1/2)) by 76+/-38% (n=9, P<0.001) of control. In contrast (-)-ketamine (100 microM) had no effect on DA efflux or uptake. In DRN, both isomers (100 microM) increased stimulated 5-HT efflux. (-)-Ketamine had a larger effect (P<0.001), an 88+/-15% increase in 5-HT efflux (n=9) versus 46+/-10% (n=8) for the (+)-isomer. The isomers had similar effects on 5-HT uptake, increasing t(1/2) by approximately 200%. No evidence of stereospecificity was seen in BSTV: both isomers had small effects (+)- and (-)-ketamine (100 microM) increasing NA efflux by 43+/-10% (n=7, P<0.001) and 29+/-8% (n=7, P<0.001), respectively. The isomers also had identical effects on NA uptake, each increasing uptake t(1/2) by approximately 100%. In summary, our data show that the optical isomers of ketamine have strikingly different stereospecificity for the monoamine systems and one might predict, therefore, a different psychotomimetic potential.  相似文献   

2.
The effects of microelectrophoretic applications of neurotransmitter substances and their antagonists on the activity of paraventricular oxytocinergic neurones were studied in urethane anesthetized lactating rats. Oxytocinergic neurones were identified by their antidromic response to the stimulation of the neurohypophysis and by their characteristic high frequency discharge of action potentials approximately 15-20s before reflex milk ejection. Acetylcholine (ACh) excited the majority (75%) of paraventricular oxytocinergic neurones, and none of the cells was inhibited in its activity by ACh. In about half of the oxytocinergic cells, atropine and hexamethonium reduced the number of action potentials during the burst discharge preceding reflex milk ejection. Noradrenaline (NE), dopamine (DA) and serotonin (5-HT) reduced the activity of most (75-100%) of oxytocinergic neurones, and none of the cells was excited by these catecholamines. These results suggest that paraventricular oxytocinergic neurones receive excitatory cholinergic inputs and inhibitory noradrenergic, dopaminergic and serotonergic inputs.  相似文献   

3.
The effects of intraperitoneal administration of gamma-hydroxybutyric acid (GHB) on biogenic amine levels in hemispheres, hypothalamus, midbrain, and medulla-pons, and on tryptophan in serum and brain, were studied. One hour after GHB administration (50 and 100 mg/kg) significant increases of dopamine concentration were observed in the hemispheres with both doses and in the hypothalamus with the higher dose, but a significant decrease of noradrenaline in the hypothalamus. No significant changes of serotonin metabolism were observed. These results indicate that low doses of GHB selectively affect the catecholaminergic neuronal activity.  相似文献   

4.
The somatotropin-releasing activity of rat hypothalamus was studied in the experiments in vitro incubating of adenohypophysis with the hypothalamic extracts or the whole hypothalamus and serotonin. The studied activity is shown to be increased in the thyroidectomized and hyperthyroid rats. Exogenic somatotropin prevents this increase. A conclusion is drawn that a link of hypothalamic adenohypophysotropic hormones of the regulatory system of the somatotropic function is not an area of the specific disturbances with hypo- and hyperthyroidism which might lead to hyposomatotropism.  相似文献   

5.
The rate of cerebellar granule cell migration is altered by neonatal hypo- and hyperthyroidism in a manner similar to previously reported effects on the growth of granule cell axons, the parallel fibers, suggesting that the two processes may be intimately linked. Altered rates of granule cell acquisition in these experimental animals reflect changes in germinal cell proliferation in the external granular layer (EGL), movement of postmitotic cells within the EGL, as well as the rate and time course of granule cell migration. Results of this study support the hypothesis that granule cells migrate to the internal granular layer by translocation of the cell body through the descending portion of the growing parallel fiber, rather than by amoeboid-like migration of the perikaryon trailing the elongating parallel fiber behind.  相似文献   

6.
The peripheral administration of oxotremorine caused a significant increase in dihydroxyphenylacetic acid (DOPAC) in the striatum of rats, dopamine (DA) level was unaffected. Injection of oxotremorine into the substantia nigra failed to change the content of dopamine and its acid metabolites homovanillic acid (HVA) and DOPAC in striatum. Injection of oxotremorine or carbachol into the substantia nigra or into the caudate nucleus did not significantly influence the DA-turnover. The partly inconsistent results are discussed in connection with literature data in regard to the existence of excitatory as well as inhibitory cholinergic systems, which are located differently and are involved in the regulation of DA-turnover.  相似文献   

7.
8.
The effect of endogenous and exogenous GABA on the level and turnover of noradrenaline and dopamine in the rat brain. Acta Physiol. Pol., 1978, 29 (2): 117--121. GABA administered to the lateral ventricle of the rat brain (i.v.c.) in doses of 200 and 600 microgram decreased the level of noradrenaline and had no effect on dopamine level. A similar effect was obtained after raising the level of endogenous GABA in the brain by means of intraperitoneal hydroxylamine (Hx) in doses of 50 and 75 mg/kg. It was also observed that GABA given i.v.c. in a dose of 600 mg/kg reduces the turnover of dopamine in the brain.  相似文献   

9.
The levels and the distribution of monoamines within the rat circumvallate papilla have been studied. Noradrenaline was found in the connective tissue underlying the taste buds, whereas serotonin was located in the basal area of the gustatory epithelium but not inside the taste buds. Following denervation, noradrenaline levels decreased and serotonin levels increased. These results suggest that both neurotransmitters may have some mutual interaction in modulating transmission at the papilla.  相似文献   

10.
11.
The effect of etorphine on dopamine and noradrenaline concentrations in different central nervous system structures in the rat. Acta Physiol. Pol., 1977, 28 (6): 529-540. Intramuscular administration of etorphine in immobilizing doses (0.008 mg/kg) was followed by a rise in dopamine concentration in the examined motor structures of the central nervous system (striopallidum, pons, cerebellum, lumbosacral intumescence of the spinal cord). Only in the motor centres of the frontal cortex dropamine concentration was decreased. At the time etorphine decreased the concentration of noradrenaline in striopallidum and raised it in the other examined structures of the central nervous system. A correlation was found between the concentrations of both substances, especially in the frontal motor centres and striopallidum. Post etorphine accumulation of dopamine in the striopallidum (for 6.369 to 11.322 mcg/g of fresh tissue) with simultaneous inhibition of motor activity of the animals suggests that etorphine inhibits the release of dopamine from the presynaptic elements in the motor centres of the central nervous system in rats. This leads to a decreased dopamine action on its receptors. Some post etorphine behavioral changes (rigidity, spastic flexion, muscle tremor) support this hypothesis.  相似文献   

12.
A comprehensive study of monoamine transmitter and metabolite concentrations measured by HPLC was undertaken in female (vasopressin-deficient) Brattleboro rats as compared to Long Evans rats. Noradrenaline was significantly increased in 8 out of 13 dissected brain regions, whereas concentrations of the metabolite 3-methoxy-4-hydroxyphenylglycol were not altered. The increases were not restricted to areas which are normally innervated by vasopressin-containing neurons. Serotonin was increased in 6 and dopamine in 4 regions and this was accompanied in some areas by increases in the metabolites 5-hydroxyindolacetic acid and dihydroxyphenylacetic acid. Only in the striatum, cerebellum, and the medulla-pons no changes could be detected in any of the compounds of interest. These results show that the long term absence of vasopressin in Brattleboro rats appears to be associated with increases in monoamine transmitter contents and decreased metabolite/transmitter ratios. The regional distribution of these changes does not bear any relationship to the regional distribution of vasopressin cell bodies or nerve endings.  相似文献   

13.
Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is effective in treatment‐refractory obsessive‐compulsive disorder and major depressive disorder. However, little is known about the neurobiological mechanisms underlying the rapid and effective changes of DBS. One of the hypotheses is that DBS modulates activity of monoamine neurotransmitters. In this study, we evaluated the effects of DBS in the NAc core on the extracellular concentration of monoaminergic neurotransmitters in the medial (mPFC) and orbital prefrontal cortex (OFC). Freely moving rats were bilaterally stimulated in the NAc core for 2 h while dopamine, serotonin, and noradrenaline were measured using in vivo microdialysis in the mPFC and the OFC. We report rapid increases in the release of dopamine and serotonin to a maximum of 177% and 127% in the mPFC and an increase up to 171% and 166% for dopamine and noradrenaline in the OFC after onset of stimulation in the NAc core. These results provide further evidence for the distal effects of DBS and corroborate previous clinical and pre‐clinical findings of altered neuronal activity in prefrontal areas.  相似文献   

14.
The dose-related effects of cysteamine treatment on hypothalamic and striatal neurotransmission were investigated. Cysteamine pretreatment with a dose of 150 mg/kg slightly increased the dopamine, and markedly decreased the noradrenaline, content of the hypothalamus in a dose-related manner. The serotonin levels of the hypothalamus and striatum were not affected. Cysteamine pretreatment with a higher dose (300 mg/kg sc) slightly increased the uptake of noradrenaline into hypothalamic slices. The drug did not influence dopamine and serotonin uptake into hypothalamus and striatal slices. These results suggest that cysteamine decreases rather selectively the noradrenaline content of the hypothalamus.  相似文献   

15.
The influence of neonatal hypo- and hyperthyroidism on different aspects of tyrosine metabolism in the hypothalamus, striatum, brainstem, adrenal glands, heart and brown adipose tissue (BAT) were studied in 14-day old rats. The synthesis rate of catecholamines (CA) was also determined in vivo after the injection of labelled tyrosine. Hypothyroidism increases tyrosinaemia and endogenous tyrosine concentration in the hypothalamus and BAT. Hyperthyroidism decreases tyrosinaemia and endogenous tyrosine levels in the striatum, adrenals and heart. The accumulation rate of tyrosine determined 30 min after an intravenous injection of the labelled amino acid has been determined in the organs, together with the influx of the amino acid, determined within 20s. Hypothyroidism increases tyrosine accumulation rate in all the organs studied, and tyrosine clearance is decreased in the striatum and brainstem; together with an increased tyrosinaemia, this leads to a normal influx. The influx of tyrosine is increased in the hypothalamus. Hyperthyroidism decreases tyrosine accumulation rate in all the organs except the adrenals. These results indicate that the thyroid status of the young rat can influence tyrosine uptake mechanisms, without modifying an organ's tyrosine content. The fact that hypothyroidism increases tyrosine influx in the hypothalamus without modifying it in the brainstem and striatum reflects an heterogeneous reactivity to the lack of thyroid hormones in different brain structures. Neonatal hypothyroidism decreases the CA synthesis rate in the striatum, the heart and the interscapular brown adipose tissue, while synthesis was enhanced in the brainstem and the adrenals. It is likely that these variations in CA synthesis are due to thyroid hormone modulation of tyrosine hydroxylase activity, the enzyme which catalyses the rate limiting step in CA biosynthesis.  相似文献   

16.
The aim of this study was to evaluate the influence of an extremely low frequency sinusoidal magnetic field (ELF MF) with frequency of 10 Hz and intensity of 1.8-3.8 mT on the levels of the biogenic amines dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), 5-hydroxytryptamine (5-HT), 5-hydroxyindolacetic acid (5-HIAA), and noradrenaline (NA), as well as on DA and 5-HT turnover in corpus striatum and frontal cortex of adult male Wistar rats. We found that ELF MF exposure for 14 days, 1 h daily, did not influence the level of the examined biogenic amines and metabolites, but increased the rate of synthesis (turnover) of DA and 5-HT in rat frontal cortex as compared to control, sham exposed rats. On the basis of the present results and our previous findings, extremely low frequency magnetic field (ELF MF) exposure has been found to alter both turnover and receptor reactivity of monoaminergic systems, as well as some behaviors induced by these systems or their agonists and antagonists.  相似文献   

17.
18.
Recent work has shown that intracerebral injections of 5,6-dihydroxytryptamine (5,6-DHT) lead to a fairly selective and long lasting depletion of 5-HT in the rat CNS (BAUMGARTEN, BJORKLUND, LACHENMAYER, NOBIN and STENEVI, 1971; DALY, FUXE and JONSSON, 1973). This effect appears to result from a degeneration of the serotonin-containing neurons (BAUMGARTEN and LACHENMAYER, 1972a). 5,6-DHT does, however, to a lesser extent affect both NA and dopamine (DA) containing nerve terminals (BAUMGARTEN et al., 1971). In an attempt, therefore, to find compounds having a more specific toxic action we have investigated several other hydroxylated tryptamines. In order to obtain information about the differential affinities of these analogues for neuronal uptake sites we have examined their effects on the uptake of [3H]5-HT and (±)-[3H]NA into synaptosomes in homogenates of rat hypothalamus and of [3H]DA uptake into a similar preparation from the rat corpus striatum. It is known that the uptake of these putative transmitters in rat brain homogenates is predominantly into the synaptosome fraction (KANNENGIESSER, HUNT and RAYNAUD, 1973; COYLE and SNYDER, 1969).  相似文献   

19.
20.
Three groups of male Sprague Dawley rats received methimazole without or with Na-thyroxine in drinking water (3 and 0.33 mg T4/l, respectively) to induce characteristic alterations of their thyroid status (hypothyroid, hyperthyroid, euthyroid). A fourth group served as an untreated control without any additive to the drinking water. With respect to the different thyroid status, the following changes in the blood parameters were found: increasing plasma-T3-levels caused a reduction in plasma viscosity, in total plasma protein and in alpha 1-globulin, but an increase in hematocrit, whole blood viscosity, the number of erythrocytes and leukocytes, alpha 2-globulin and beta-globulin. It was concluded that the increase in the plasma viscosity in the hypothyroid status is mainly due to an alteration of the plasma protein pattern, and that the increase in whole blood viscosity in the hyperthyroid rat is a consequence of increased hematocrit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号