首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李文轲  李丰余  张思瑶  蔡斌  郑娜  聂宇  周到  赵倩 《遗传》2014,36(6):618-624
二代测序技术的发展对测序数据的处理分析提出了很高的要求。目前二代测序数据分析软件很多, 但是绝大多数软件仅能完成单一的分析功能(例如:仅进行序列比对或变异读取或功能注释等), 如何能正确高效地选择整合这些软件已成为迫切需求。文章设计了一套基于perl语言和SGE资源管理的自动化处理流程来分析Illumina平台基因组测序数据。该流程以测序原始序列数据作为输入, 调用业界标准的数据处理软件(如:BWA, Samtools, GATK, ANNOVAR等), 最终生成带有相应功能注释、便于研究者进一步分析的变异位点列表。该流程通过自动化并行脚本控制流程的高效运行, 一站式输出分析结果和报告, 简化了数据分析过程中的人工操作, 大大提高了运行效率。用户只需填写配置文件或使用图形界面输入即可完成全部操作。该工作为广大研究者分析二代测序数据提供了便利的途径。  相似文献   

2.
以美洲大蠊Periplaneta americana为原料生产的康复新液等药品临床疗效显著,得到了广泛应用。本文以四川好医生攀西药业有限责任公司饲养的药用美洲大蠊为材料,首次采用Illumina Hi Seq 2000和Pac Bio SMRT测序平台开展了全基因组测序,并进行基因组组装、注释和分析。原始测序数据经过滤后得到1.4 Tb的二代测序数据和33.81 Gb的三代测序数据。组装结果表明,美洲大蠊基因组大小为3.26 Gb,这在已报道的昆虫基因组中仅次于东亚飞蝗Locusta migratoria。基因组重复序列含量为62.38%,杂合度为0.635%,表明其为复杂基因组。组装的Contig N50和scaffold N50长度分别为28.2 kb、315 kb,单拷贝基因完整性为88.1%,小片段文库测序数据平均比对率为99.8%,测序和组装质量满足后续分析要求。采用De novo预测、同源预测和基于转录本预测3种方法共注释到14 568个基因,其中92.4%的基因获得了功能注释。本研究首次完成了美洲大蠊的全基因组测序,也是大蠊属Periplaneta昆虫的第一个基因组,为美洲大蠊遗传进化分析和药用基因资源挖掘打下了重要基础。  相似文献   

3.
基于高通量测序的全基因组关联研究策略   总被引:1,自引:0,他引:1  
周家蓬  裴智勇  陈禹保  陈润生 《遗传》2014,36(11):1099-1111
全基因组关联研究(Genome-wide association study, GWAS)是人类复杂疾病研究的重要组成部分之一,在群体水平检测全基因组范围的遗传变异与可观测性状间的遗传关联。传统的GWAS是以芯片(Array)技术获得高密度的遗传变异,尽管硕果累累,但也存在不少问题。如:所谓的“缺失的遗传力”,即利用关联分析检测达到全基因组水平显著的遗传变异位点只能解释小部分遗传力;在某些性状上不同研究的结果一致性较弱;显著关联的遗传变异位点的功能较难解释等。高通量测序技术,也称第二代测序(Next-generation sequencing, NGS)技术,可以快速、准确地产出高通量的变异位点数据,为解决以上问题提供了可行的方案。基于NGS技术的GWAS方法(NGS-GWAS),可在一定程度上弥补传统GWAS的不足。文章对NGS-GWAS策略和方法进行了系统性调研,提出了目前较为可行的NGS-GWAS的实施策略和方法,并对NGS-GWAS如何应用于个体化医疗(Personalized medicine, PM)进行了展望。  相似文献   

4.
测序技术发展到今天,取得了里程碑式的突破,加深了我们对生物多样性、生理代谢及疾病的理解,促进了生物学的发展。二代测序技术是目前最为广泛使用的测序技术,和现有实验手段结合又开拓了许多新的应用领域。RNA-seq就是二代测序技术的最主要的应用之一。它不仅完善了基因组的基因注释,发现新的可变剪切位点及新的基因,也能够在全基因组范围内检测转录本的表达情况,为更好的了解基因功能提供线索。本文概述了测序技术的发展,阐述了RNA-seq的相关应用,可为相关研究和实验设计提供参考。  相似文献   

5.
遗传易感性是指基于个人遗传背景的多基因遗传病发病风险,即来源于父母一方或双方的特定遗传变异在某些情况下会诱发疾病。在特定疾病的发病机制中某些高外显率的遗传变异发挥重要作用,此类疾病通过患病家系分析即可定位疾病相关遗传变异;但另一些低外显率变异的作用则不明显,需要大规模患病人群分析来解析遗传机制。近年来,随着二代测序和多组学分析技术的发展和基因组数据的大量积累,癌症、代谢性疾病、心脑血管疾病和精神疾病等疾病遗传易感性研究中取得了显著进展,为疾病的早期筛查和诊断治疗提供了参考。  相似文献   

6.
【背景】植物乳植杆菌(Lactiplantibacillus plantarum) P-8是一株具有优良益生特性的乳酸菌,探究其短期连续传代过程中的遗传稳定性对评估其加工生产的稳定性有着重要的指导作用。【目的】研究植物乳植杆菌P-8在37℃恒温环境下、MRS培养基中连续传代100代过程中的遗传稳定性。【方法】在MRS培养基、37℃恒温环境下将植物乳植杆菌P-8连续传代100代,测定不同代菌株(第0、25、50、75和100代)的菌体形态和碳水化合物利用能力,并利用二代、三代测序相结合的技术完成不同代菌株全基因组测序,通过比较基因组学综合分析其在连续传代100代过程中的遗传稳定性。【结果】植物乳植杆菌P-8在连续培养100代过程中,其菌体形态和碳水化合物利用能力均无明显变化。以植物乳植杆菌P-8的原始菌株基因组作为参考,比较分析了不同代菌株的基因组稳定性,发现菌株均有单核苷酸多态性(single nucleotide polymorphism, SNP)位点存在,但数量较少(SNP位点<21个)。不同代菌株基因组共线性良好,具有极高的相似性,且不同代菌株碳水化合物活性酶注释结果无显...  相似文献   

7.
为探究滇黄精(Polygonatum kingianum)叶绿体全基因组特征和密码子使用偏性,利用第二代测序技术对滇黄精嫩叶进行测序,再经组装与注释后得到其叶绿体基因组全序列,通过MISA、EMBOSS和CodonW等软件对滇黄精叶绿体全基因组的SSR位点、系统发育及密码子偏好性进行分析。结果表明,滇黄精完整叶绿体基因组长度为155 852 bp,基因组平均GC含量为37.7%,其大、小单拷贝区(LSC)长度分别为84 633和185 25 bp,反向重复区长度为26 347 bp,注释了132个基因,包括86个蛋白编码基因、38个tRNA基因和8个核糖rRNA基因。叶绿体基因组中共有69个SSR位点,绝大多数属于单碱基重复的A/T类型。系统发育分析表明滇黄精与格脉黄精(P. tessellatum)亲缘关系近,可能与分布地域有关。密码子偏好性分析表明,滇黄精叶绿体基因组密码子使用模式受到自然选择影响大于突变因素,最终确定9个最优密码子。因此, 滇黄精叶绿体基因组遗传结构和系统发育位置及其密码子偏倚的分析,为叶绿体基因工程研究提供理论依据。  相似文献   

8.
目的:建立新的线粒体基因组DNA杂交捕获探针制备方法并用进行初步应用。方法:通过PCR技术扩增特异线粒体DNA片段,并与生物素偶联,最后与标记磁珠的亲和素混合获得捕获探针。并自行制备的线粒体基因组DNA文库捕获探针与肝癌全基因组测序文库进行液相杂交。分离捕获产物后PCR扩增并进行测序分析。结果:成功建立了线粒体基因组杂交捕获探针制备方法并成功分离线粒体基因组DNA;对测序数据的分析显示:90%以上测序数据来自线粒体基因组DNA,且覆盖率达到100%,且均一性良好。检测到的同质性变异位点数量和异质性变异位点数量与全基因组测序数据产生的结果接近(P=0.9152,P=0.8409)。结论:新方法制备的线粒体基因组DNA杂交捕获探针可以从全基因组文库中高效捕获线粒体基因组DNA测序文库。  相似文献   

9.
茸角是鹿科动物特有的器官,具有重要的生物学意义。鹿茸生长是一个复杂的生物代谢过程,其重量与遗传因素有一定关联。本研究对饲养条件基本一致的5个梅花鹿(Cervus nippon)群体进行调查,获得高产和低产梅花鹿个体共100只,利用全基因组重测序分析这些个体与鹿茸重量相关的遗传变异。结果表明,共得到94个与鹿茸重量可能相关的遗传变异,其中有2个变异位点分别定位于OAS2ALYREF/THOC4基因的外显子区,且ALYREF/THOC4基因在鹿茸中表达量很高。功能富集分析发现,这些遗传变异与鹿茸生长发育密切相关,可作为潜在的鹿茸重量相关遗传变异。本研究首次通过全基因组重测序直接筛选与鹿茸重量相关的遗传变异,并分析关联基因的生物学功能,对揭示鹿茸生长发育和鹿茸重量差异形成的遗传机制具有重要意义。  相似文献   

10.
动物种群遗传多态性研究中的PCR技术   总被引:2,自引:0,他引:2  
基因组DNA的变异是种群遗传多态性研究的基础。PCR技术可以在反应管内经济快速地扩增特定DNA序列,在动物种群遗传多态性研究中的应用主要包括三个方面:(1)种群遗传多态位点的检测;(2)基因定位或利用已经定位的单拷贝基因设计染色体位点特异的分子标记;(3)与DNA测序技术相结合,高效经济地获取特定基因座位的全部遗传变异。  相似文献   

11.
随着高通量DNA测序技术的飞速发展,越来越多的物种完成了基因组测序.定位编码基因、确定编码基因结构是基因组注释的基本任务,然而以往的基因组注释方法主要依赖于DNA及RNA序列信息.为了更加精确地解读完成测序的基因组,我们需要整合多种类型的组学数据进行基因组注释.近年来,基于串联质谱技术的蛋白质组学已经发展成熟,实现了对蛋白质组的高覆盖,使得利用串联质谱数据进行基因组注释成为可能.串联质谱数据一方面可以对已注释的基因进行表达验证,另一方面还可以校正原注释基因,进而发现新基因,实现对基因组序列的重新注释.这正是当前进展较快的蛋白质基因组学的研究内容.利用该方法系统地注释已完成测序的基因组已成为解读基因组的一个重要补充.本文综述了蛋白质基因组学的主要研究内容和研究方法,并展望了该研究方向未来的发展.  相似文献   

12.
李鑫  李凯  李一佳  马磊 《生物信息学》2016,14(3):188-194
SeqMule可根据调用的人类基因组和外显子组数据自动调节变量,对所有测序数据的单核苷酸多态性(Single nucleotide polymorphism,SNP)进行分析和注释。目的:通过对两名痛风患者的实验数据进行分析,详细地为生物信息学研究人员介绍了SeqMule软件,以期为全基因组和外显子组测序数据提供一站式的分析途径。方法:基于SeqMule内置的BWA(BurrowsWheeler Aligner)、GATK(The Genome Analysis Toolkit)、SAMtools、Freebayes比对和分析工具,以两名痛风患者的DNA测序数据分析为例,本文详细地论述了SeqMule的特点及操作,并对两名患者的外显子测序数据进行了自动化比对与SNP分析。发现SeqMule优化了很多分析软件存在的一些问题,可以对外显子组和全基因组测序数据实现全面、灵活、高效地自动化分析,能更好地分析高通量测序数据,最终提升数据分析的一致性和准确性。  相似文献   

13.
《遗传》2019,(11)
随着测序技术的不断发展,越来越多物种的全基因组数据被测定和广泛应用。在二代基因组数据爆发式增长的同时,除了核基因组数据,线粒体基因组数据也非常重要。高通量测序的全基因组序列中除了核基因组序列也包括线粒体基因组序列,如何从海量的全基因组数据中提取和拼装线粒体基因组序列并加以应用成为线粒体基因组在分子生物学、遗传学和医学等方面的研究方向之一。基于此,从全基因组数据中提取线粒体基因组序列的策略及相关的软件不断发展。根据从全基因组数据中锚定线粒体reads的方式和后续拼装策略的不同,可以分为有参考序列拼装方法和从头拼装方法,不同拼装策略及软件也表现出各自的优势和局限性。本文总结并比较了当前从全基因组数据中获得线粒体基因组数据的策略和软件应用,并对使用者在使用不同策略和相关软件方面给予建议,以期为线粒体基因组在生命科学的相关研究中提供方法上的参考。  相似文献   

14.
张杰  尚宗民  曹建华  樊斌  赵书红 《遗传》2012,(10):121-129
2009年11月,美、英等国科学家宣布首次绘制出家猪的基因组草图。近两年,随着全基因组序列陆续释放,越来越多的测序片段得到正确拼接组装,从全基因组水平上对猪功能基因进行注释分析显得尤为迫切。文章以丝切蛋白1(Cofilin 1,CFL1)基因的注释过程为例,介绍了运用Sanger研究所开发的Otterlace软件对猪全基因组的免疫基因序列进行人工分析与注释。通过详细说明Zmap、Blixem和Dotter 3个注释工具的使用方法,并给出了注释过程的主要步骤,以期对Otterlace的应用起一个抛砖引玉的作用。运用Otterlace软件对243个免疫相关基因进行分析,其中180个基因得到完整或部分注释,这为后续深入开展这些基因的功能研究奠定了基础。  相似文献   

15.
《遗传》2020,(7)
随着测序技术的不断发展,产生了海量的基因组测序数据,极大地丰富了公共遗传数据资源。同时为了应对大量基因组数据的产生,基因组比较和注释算法、工具不断更新,使得联合多种注释工具得到更准确的蛋白编码基因的注释信息成为可能。目前公共数据库的原核生物基因组测序和装配有些是10多年前的,存在大量预测的功能未知的编码基因。为了提升美国国家生物信息中心(National Center for Biotechnology Information,NCBI)数据库中基因组的注释质量,本研究联合使用多种原核基因识别算法/软件和基因表达数据重注释1587个细菌和古细菌基因组。首先,利用Z曲线的33个变量从177个基因组原注释中识别获得3092个被过度注释为蛋白编码基因的序列;其次,通过同源比对为939个基因组中的4447个功能未知的蛋白编码基因注释上具体功能;最后,通过联合采用ZCURVE 3.0和Glimmer 3.02以及Prodigal这3种高精度的、广泛使用且基于算法不同而互补的基因识别软件来寻找漏注释基因。最终,从9个基因组中找到了2003个被漏注释的蛋白编码基因,这些基因属于多个蛋白质直系同源簇(clusters of orthologous groups of proteins, COG)。本研究使用新的工具并结合多组学数据重新注释早期测序的细菌和古细菌基因组,不仅为新测序菌株提供注释方法参考,而且这些重注释后得到的细菌基因序列也会对后续基础研究有所帮助。  相似文献   

16.
人类线粒体基因组DNA(mtDNA)是一个16569 bp的双链闭合环状DNA分子,具有母系遗传、多拷贝、高异质性及高变异率等特点,是研究人类遗传和进化上广泛使用的分子标记.近几年,高通量测序技术的出现,使得在短时间内准确测定mtDNA序列成为可能;但目前常用的高通量测序建库方法操作复杂、研究费用相对较高.基于多重PCR扩增的测序方法具有高效率、高灵敏度、低成本的特点,因而适用于大规模线粒体基因组的变异检测分析.利用73个相互重叠的扩增子通过多重PCR方法来扩增中国人的线粒体全基因组,在扩增片段两端连接特定的接头序列,然后在IlluminaHiSeq X Ten平台上进行高通量测序.对获得的测序数据分析发现,mtDNA每个位点的测序深度均达到2000×以上;当测序深度为100×时,所有样本的序列覆盖度都达到100%;数据质量适用于后续的变异检测分析.利用本研究建立的基于多重PCR的二代测序方法无需片段化即可直接上机测序,在复杂遗传病的研究中有着广泛的应用前景.  相似文献   

17.
《菌物学报》2017,(5):618-624
可变剪接是引起蛋白多样性的主要机制之一,而转录组reads的重新定位是获取可变剪接位点的有效方法,适合在基因组较小的真菌中应用。ZOOM软件是一款可在window系统下运行的reads可视化定位软件,被广泛用于下一代基因组测序(NGS)的reads定位及单碱基多态性位点(SNP)的发掘。本文发现该软件分析可变剪接的新用途,并以禾谷镰刀菌Fusarium graminearum的4个基因为例详细描述该方法在真菌可变剪接位点识别中的应用,这些结果均获得RT-PCR的验证。  相似文献   

18.
高通量测序技术和生物信息学的发展极大的促进了山羊分子生物学研究。山羊参考基因组的不断完善以及基因组重测序技术的应用,在全基因组水平上发现了大量的遗传变异信息(SNP、Indel和CNV),丰富了山羊分子群体遗传学研究利用的分子标记。综述了山羊参考基因组组装和全基因组变异图谱的构建及其在山羊上的研究进展,以期为进一步利用分子遗传标记进行山羊的各种性状的遗传基础研究和遗传资源保护利用提供科学依据和参考。  相似文献   

19.
施季森  王占军  陈金慧 《遗传》2012,34(2):145-156
近年来, 植物全基因组测序的结果正如雨后春笋般涌现, 木本植物全基因组测序也在紧锣密鼓地展开。但由于木本植物通常基因组较大, 基因组结构较为复杂, 在测序、测序后的组装、注释、功能分析等均存在较大的困难。在基因组测序分析的经费预算方面也存在着较大的压力。因此, 有必要对这方面的研究进展及其存在问题进行分析比较, 以提高林木全基因组研究方面的效率。文章在比较分析已经发展起来的3代基因测序技术(Sanger测序法、合成测序法和单分子测序法)的基础上, 选择4种已经公布的木本植物(杨树、葡萄、番木瓜、苹果), 从全基因组测序的研究背景、测序结果及应用的研究进展和存在问题等方面进行了述评, 对未来要开展的木本植物全基因组测序前的准备工作(材料选择、遗传图谱和连锁图谱的构建、测序技术的选择), 全基因组测序结果的生物信息学分析和应用进行了讨论。  相似文献   

20.
目的:利用二代测序技术检测GT1-7细胞中KISS1和GnRH基因启动子范围内的甲基化状态,并用金标准的亚硫酸氢盐修饰后的克隆测序作为对照,比较二代测序与金标准克隆测序在研究DNA甲基化检测中的差别。方法:提取GT1-7细胞基因组DNA并进行亚硫酸氢盐处理。进行巢式PCR,将PCR产物进行二代测序。同时采用金标准的亚硫酸氢盐修饰后克隆测序的方法作为对照,对相同批次的PCR产物进行克隆测序。结果:PCR产物二代测序结果表明KISS1和GnRH两个基因的27个CpG甲基化位点信息完整,结果准确。挑取10个克隆进行一代测序结果表明序列无丢失,KISS1和GnRH两个基因的27个CpG甲基化位点信息完整。结论:利用高通量的二代测序技术能够有效的对DNA甲基化的PCR产物进行检测,二代测序和克隆测序都是研究DNA甲基化的有效方法,但前者与克隆测序相比每一个读取序列(reads)都相当于一个单克隆,且二代测序每个区段得到成百上千个reads,因此二代测序结果更加精确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号