首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the early stages of development of the fresh water fish loach (Misgurnus fossilis) the resting membrane potential (Er) of cleaving cells oscillates periodically with an amplitude of 8-12 mV. Er oscillation correlates with the cell cycle and is accompanied by changes of K+ conductivity. Two types of K(+)-selective ionic channels with conductance of approximately 70 and 25 pS in symmetrical (150 mM KCl) solution were observed in the membrane of cleaving loach embryos. 'High' conductance and 'low' conductance channels were recorded in approximately 90% and 10% of patches investigated (n = 275), respectively? The activity of 'high' conductance channels was regulated by the application of pressure to the membrane, ie these channels were stretch-activated (SA). The activity of SA channels changes dramatically during the cell-cleavage cycle. At the beginning of interphase the probability of SA channels being in the open state (P0) was minimal, while at prometaphase the probability was increased 10-100-fold. Application of ATP to the cytoplasmic inside-out patches induced a reversible elevation of stretch sensitivity of the SA channels in 50% of the patches, while the non-hydrolyzable analogue of ATP was not effective. Combined application of ATP, cAMP and cAMP-dependent protein kinase (PK) induced a reversible elevation in the SA channel activity while inhibitors of PK prevented its activating effects. Phosphatase inhibitors prolonged the activating effect of PK on SA channels. We propose that oscillations of the resting potential during the cell-cleavage cycle arise due to modulation of SA channel sensitivity to stretch through cAMP-dependent phosphorylation.  相似文献   

2.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 microM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   

3.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 μM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   

4.
Single-channel recordings from central neurons of the helix snail, Cepaea nemoralis, revealed two types of channels that could be activated by stretch (i.e., by the membrane deformation produced when suction is applied to the patch pipette). One, a K+ channel (58 pS in physiological solution), was evident in excised and cell-attached patches. Its conductance in symmetrical [K+] solutions indicated a channel of high K+ permeability (PK = 3.4 x 10(-13) cm/s). Though osmoregulation has been suggested as a function for such channels, comparisons among molluscs indicate osmotic milieu does not govern their expression; Cepaea is terrestrial, and stretch-activated K+ channels similar to those described here occur in aquatic and marine molluscs. The second type of channel, observed only in excised patches, was Cl- permeant; it had a large conductance (130 pS) and was inactive prior to patch excision. Membrane tension may not be the physiological activator of either the K+ or Cl- channel; the channels are designated as stretch-activated channels on the basis of their experimental behaviour during single-channel recording.  相似文献   

5.
The effect of cAMP on Ca(2+)-permeable channels from Arabidopsis thaliana leaf guard cell and mesophyll cell protoplasts was studied using the patch clamp technique. In the whole cell configuration, dibutyryl cAMP was found to increase a hyperpolarization-activated Ba(2+) conductance (I(Ba)). The increase of I(Ba) was blocked by the addition of GdCl(3). In excised outside-out patches, the addition of dibutyryl cAMP consistently activated a channel with particularly fast gating kinetics. Current/voltage analyses indicated a single channel conductance of approximately 13 picosiemens. In patches where we measured some channel activity prior to cAMP application, the data suggest that cAMP enhances channel activity without affecting the single channel conductance. The cAMP activation of these channels was reversible upon washout. The results obtained with excised patches indicate that the cAMP-activated I(Ba) seen in the whole cell configuration could be explained by a direct effect of cAMP on the Ca(2+) channel itself or a close entity to the channel. This work represents the first demonstration using patch clamp analysis of the presence in plant cell membranes of an ion channel directly activated by cAMP.  相似文献   

6.
Zhang W  Fan LM  Wu WH 《Plant physiology》2007,143(3):1140-1151
In responses to a number of environmental stimuli, changes of cytoplasmic [Ca(2+)](cyt) in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca(2+) channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca(2+) channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca(2+) channel inhibitor Gd(3+). Disruption of actin filaments activated SA Ca(2+) channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca(2+)](cyt) imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca(2+) elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca(2+) channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca(2+)](cyt) and consequently inhibits overswelling of guard cells. This SA Ca(2+) channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes.  相似文献   

7.
J D Lechleiter  D A Dartt  P Brehm 《Neuron》1988,1(3):227-235
The action of vasoactive intestinal peptide (VIP) on Ca2(+)-dependent K+ currents, in dissociated mouse lacrimal cells, was investigated using patch clamp techniques. In whole cell recordings, VIP (10-100 pM) increased the magnitude of the Ca2(+)-dependent K+ current. In single channel recordings, VIP increased the fraction of time the large charybdotoxin-sensitive Ca2(+)-activated K+ channel spent in the open state. The activity of this channel was also increased by adding forskolin or 8-bromo cAMP to the bath. Additionally, application of either cAMP or catalytic subunit of cAMP-dependent protein kinase directly to the cytoplasmic surface of excised inside out patches reversibly lengthened the time Ca2(+)-activated K+ channels spent in the open state. These data suggest that VIP stimulates Ca2(+)-activated K+ channels by a cAMP-dependent pathway in mouse lacrimal acinar cells.  相似文献   

8.
Stretch-activated cation channels in human fibroblasts.   总被引:2,自引:1,他引:1       下载免费PDF全文
Nonconfluent fibroblasts are relatively depolarized when compared with confluent fibroblasts, and transient hyperpolarizations result from a range of external stimuli as well as internal cellular activities. This electrical activity ceases, along with growth and mitogenic activity, when the cells become confluent. A calcium-activated potassium conductance is thought to be responsible for these hyperpolarizations, but in human fibroblasts the large calcium-activated potassium channel is not stretch-activated. We report here the identification of single stretch-activated cation channels in human fibroblasts, using the cell-attached and inside-out patch clamp techniques. The most prominent channel had a conductance of approximately 60 pS (picoSeimens) in 140 mM potassium and was permeable to potassium and sodium. The channel showed significant adaptation of activity when stretch was maintained over a period of several seconds, but a static component persisted for much longer periods. Higher conductance channels were also observed in a few excised patches.  相似文献   

9.
M Li  J W West  Y Lai  T Scheuer  W A Catterall 《Neuron》1992,8(6):1151-1159
Voltage-gated Na+ channels, which are responsible for the generation of action potentials in brain, are phosphorylated by cAMP-dependent protein kinase in vitro and in intact neurons. Phosphorylation by cAMP-dependent protein kinase reduces peak Na+ currents 40%--50% in membrane patches excised from rat brain neurons or from CHO cells expressing type IIA Na+ channels. Inhibition of basal cAMP-dependent protein kinase activity by transfection with a plasmid encoding a dominant negative mutant regulatory subunit increases Na+ channel number and activity, indicating that even the basal level of kinase activity is sufficient to reduce Na+ channel activity significantly. Na+ currents in membrane patches from kinase-deficient cells were reduced up to 80% by phosphorylation by cAMP-dependent protein kinase. These effects could be blocked by a specific peptide inhibitor of cAMP-dependent protein kinase and reversed by phosphoprotein phosphatases. Convergent modulation of brain Na+ channels by neurotransmitters acting through the cAMP and protein kinase C signaling pathways may result in associative regulation of electrical activity by different synaptic inputs.  相似文献   

10.
The voltage dependence of stretch-activated cation channels in leech central neurons was studied in cell-free configurations of the patch-clamp technique. We established that stretch-activated channels excised from identified cell bodies of desheathed ganglia, as well as from neurons in culture, were slowly and reversibly activated by depolarizing membrane potentials. Negative pressure stimuli, applied to the patch pipette during a slow periodical modulation of membrane potential, enhanced channel activity, whereas positive pressures depressed it. Voltage-induced channel activation was observed, with soft glass pipettes, both in inside-out and outside-out membrane patches, at negative and positive reference potentials, respectively. The results presented in this study demonstrate that membrane depolarization induces slow activation of stretch-activated channels of leech central neurons. This phenomenon is similar to that found in Xenopus oocytes, however, some peculiar features of the voltage dependence in leech stretch-activated channels indicate that specific membrane-glass interactions might not necessarily be involved. Moreover, following depolarization, stretch-activated channels in membrane patches from neurons in culture exhibited significantly shorter delay to activation (sec) than their counterparts from neurons of freshly isolated ganglia (hundreds of sec).  相似文献   

11.
Cultured normal (N) cystic fibrosis (CF) keratinocytes were evaluated for their Cl(-)-transport properties by patch-clamp-, Ussing chamber- and isotopic efflux-measurements. Special attention was paid to a 32 pS outwardly rectifying Cl- channel which has been reported to be activated upon activation of cAMP-dependent pathways in N, but not in CF cells. This depolarization-induced Cl- channel was found with a similar incidence in N and CF apical keratinocyte membranes. However, activation of this channel in excised patches by protein kinase (PK)-A or PK-C was not successful in either N or CF keratinocytes. Forskolin was not able to activate Cl- channels in N and CF cell-attached patches. The Ca(2+)-ionophore A23187 activated in cell-attached patches a linear 17 pS Cl- channel in both N and CF cells. This channel inactivated upon excision. No relationship between the cell-attached 17 pS and the excised 32 pS channel could be demonstrated. Returning to the measurement of Cl- transport at the macroscopic level, we found that a drastic rise in intracellular cAMP induced by forskolin did in N as well as CF cells not result in a change in the short-circuit current (Isc) or the fractional efflux rates of 36Cl- and 125I-. In contrast, addition of A23187 resulted in an increase of the Isc and in the isotopic anion efflux rates in N and CF cells. We conclude that Cl(-)-transport in cultured human keratinocytes can be activated by Ca2+, but not by cAMP-dependent pathways.  相似文献   

12.
We studied the blocking mechanism of 5-hydroxydecanoate, a novel antiarrhythmic agent, on the ATP-sensitive K+ channel in the single ventricular myocytes using the inside-out patch clamp technique. The channel activity in response to 5-hydroxydecanoate varied with each membrane patch corresponding to the sensitivity to ATP. In this condition the exogenous application of cAMP or cAMP-dependent protein kinase (PKA) obviously recovered the ATP-sensitive K+ channel activity after channel deactivation. By contrast, in membrane patches exhibited low sensitivity to ATP, endogenous cAMP-dependent protein kinase inhibitor (PKI) depressed the channel activity and restored the inhibitory action of 5-hydroxydecanoate and ATP on the channel. These results suggest that PKA-PKI system is involved in the regulatory mechanism of gating activity of the ATP-sensitive K+ channel and the blocking action of 5-hydroxydecanoate and ATP appears to be exerted by potentiating the inhibitory action of PKI on the channel.  相似文献   

13.
Mechanosensitive (MS) ion channels are ubiquitous in eukaryotic cell types but baffling because of their contentious physiologies and diverse molecular identities. In some cellular contexts mechanically responsive ion channels are undoubtedly mechanosensory transducers, but it does not follow that all MS channels are mechanotransducers. Here we demonstrate, for an archetypical voltage-gated channel (Shaker-IR; inactivation-removed), robust MS channel behavior. In oocyte patches subjected to stretch, Shaker-IR exhibits both stretch-activation (SA) and stretch-inactivation (SI). SA is seen when prestretch P(open) (set by voltage) is low, and SI is seen when it is high. The stretch effects occur in cell-attached and excised patches at both macroscopic and single-channel levels. Were one ignorant of this particular MS channel's identity, one might propose it had been designed as a sophisticated reporter of bilayer tension. Knowing Shaker-IR's provenance and biology, however, such a suggestion would be absurd. We argue that the MS responses of Shaker-IR reflect not overlooked "mechano-gating" specializations of Shaker, but a common property of multiconformation membrane proteins: inherent susceptibility to bilayer tension. The molecular diversity of MS channels indicates that susceptibility to bilayer tension is hard to design out of dynamic membrane proteins. Presumably the cost of being insusceptible to bilayer tension often outweighs the benefits, especially where the in situ milieu of channels can provide mechanoprotection.  相似文献   

14.
Single IK(Ca) channels of human erythrocytes were studied with the patch-clamp technique to define their modulation by endogenous protein kinase C (PKC). The perfusion of the cytoplasmic side of freshly excised patches with the PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited channel activity. This effect was blocked by PKC(19-31), a peptide inhibitor specific for PKC. Similar results were obtained by perfusing the membrane patches with the structurally unrelated PKC activator 1-oleoyl-2-acetylglycerol (OAG). Blocking of this effect was induced by perfusion with PKC(19-31) or chelerythrine. Channel activity was not inhibited by the PMA analog 4alpha-phorbol 12,13-didecanoate (4alphaPDD), which has no effect on PKC. Activation of endogenous cAMP-dependent protein kinase (PKA), which is known to up-modulate IK(Ca) channels, restored channel activity previously inhibited by OAG. The application of OAG induced a reversible reduction of channel activity previously up-modulated by the activation of PKA, indicating that the effects of the two kinases are commutative, and antagonistic. Kinetic analysis showed that down-regulation by PKC mainly changes the opening frequency without significantly affecting mean channel open time and conductance. These results provide evidence that an endogenous PKC down-modulates the activity of native IK(Ca) channels of human erythrocytes. Our results show that PKA and PKC signal transduction pathways integrate their effects, determining the open probability of the IK(Ca) channels.  相似文献   

15.
The heptapeptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) is a synthetic construct of a substrate for cAMP-dependent protein kinase (PK). In this work we show that Kemptide has all the properties of a cytophilic substrate, i.e. it is a molecule preserving cell membrane intactness when added to cultured cells. Kemptide thus satisfies the prerequisites for employment in assays for cell surface-located ecto-PK activity. Different types of intact cells catalyze the phosphorylation of Kemptide in the presence of extracellular ATP and cAMP with Km values of 3-4 microM for Kemptide. Kemptide phosphorylation was influenced by PKI, the inhibitory protein specific for cAMP-PK. The results of comparative experiments with intact cells and with cell extracts demonstrate the ectoenzyme nature of this cAMP-PK. Further, the possibility was ruled out of a transfer of enzyme activity from damaged cells to the surface of intact cells. The anchorage of the surface cAMP-PK activity to the plasma membrane appears to be relatively stable since (i) cell supernatants, obtained after preincubation of intact cells with cAMP or Kemptide, did not show Kemptide phosphorylation, and (ii) the cAMP-dependent PK activity remained with cells even after five consecutive washes with cAMP or Kemptide. This is in contrast to the ecto-cAMP-independent phosvitin/casein type PK (Kübler, D., Pyerin, W., Burow, E., and Kinzel, V. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025) which is released from intact cells through the addition of substrate. Data are presented which show that both ectokinase activities are exhibited independently. In conjunction with published evidence for an active export of cAMP from cells as well as for the appearance of extracellular ATP the demonstration of an ecto-cAMP-PK further supports the potential of PK for intercellular regulation. The potential of ecto-cAMP-PK is demonstrated by its ability to phosphorylate biologically active forms of atrial natriuretic peptide, the atrial natriuretic peptide, which possesses the specific sequence for a cAMP-PK-catalyzed phosphorylation.  相似文献   

16.
Recently we demonstrated the presence of cell-surface-located cAMP-dependent protein kinase (ecto-PK A) activity in a number of different cell types [Kübler, D., Pyerin, W., Bill, O., Hotz, A., Sonka, J. and Kinzel, V. (1989) J. Biol. Chem. 264, 14549-14555]. The question of the physiological role of externally directed kinase activity prompted a search for potential natural substrates present in the intercellular fluid. In the present study we have investigated the phosphorylation by ecto-PK A of the human atrial natriuretic peptide ANP99-126, a hormone released by cardiac cells. This 28-amino-acid peptide carries the phosphorylation consensus sequence Arg-Arg-Ser-Ser for the PK A. Incubation of various cell lines (including epithelial, epidermal, myoblast and lymphoma cells) or freshly isolated blood cells (macrophages, erythrocytes and platelets) with ANP in the presence of low micromolar concentrations of ATP resulted in the phosphorylation of ANP at Ser residues. The ANP phosphorylation reaction proved strictly dependent on cAMP; cAMP could not be replaced by cGMP. The phosphorylation was inhibited by the PK A-specific inhibitory peptide and increased linearily for up to 15 min and with a Km value of 3-5 microM for ANP. At higher ATP concentrations (greater than 100 microM) the incorporation rates amounted to about 0.3 mmol P (mol ANP)-1 min-1. The rise of intracellular cAMP in HEL30 (an epidermal cell line) after application of the beta-adrenergic receptor agonist isoproterenol led to an approximately three-fold stimulation of ANP phosphorylation which appears to be brought about by an efflux of intracellular cAMP. Employing cell supernatant fluids and cell sonicates, it could be shown that the phosphorylation of ANP results from the ecto-PK A. Comparison of ANP with ANP phosphorylated in vitro using purified catalytic subunit of PK A showed that phosphorylation is accompanied by certain changes in the average solution conformation of the peptide, consistent with the changes known to occur in its biological activity. Our results demonstrate cAMP-dependent phosphorylation of the peptide hormone analogue ANP99-126 by intact cells through ecto-PK A, an intriguing mechanism for post-translational processing of ANP.  相似文献   

17.
Single stretch-activated ion channels were studied on the soma and primary dendrites of stretch receptor neurons of the crayfish Orconectes limosus. When the membrane of the patch was deformed by applying suction to the pipette, a marked nonlinear increase in single-channel activity could be observed in two types of channels. These were indistinguishable on the basis of their single-channel conductances but differed in their voltage range of activation. One type showed strong inward rectification (RSA channel) and the second type was largely voltage independent (SA channel). A linear relationship was found between negative pressure and the natural logarithm of the channels' open probability. For an e-fold change in pressure, the average sensitivity was 8.7 +/- 0.4 (SD, n = 5) mmHg for the RSA channel and 5.6 +/- 2.2 (n = 5) mmHg for the SA channel. Both channels were found to be permeable to mono- and divalent cations. Current-voltage relationships were linear with slope conductances for the SA channel of: 71 +/- 11 (SD, n = 3) pS for K+, 50 +/- 7.4 (n = 5) pS for Na+, and 23 pS for Ca++. Similar values were found for the RSA channel. The data suggest that the SA channel is responsible for the mechanotransduction process in the stretch receptor neuron.  相似文献   

18.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

19.
The activation of the nonselective cation channels in mouse pancreatic acinar cells has been assessed at low agonist concentrations using patch-clamp whole cell, cell-attached patch, and isolated inside-out patch recordings. Application of acetylcholine (ACh) (25-1,000 nM) and cholecystokinin (CCK) (2-10 pM) evoked oscillatory responses in both cation and chloride currents measured in whole cell experiments. In cell-attached patch experiments we demonstrate CCK and ACh evoked opening of single 25-pS cation channels in the basolateral membrane. Therefore, at least a component of the whole cell cation current is due to activation of cation channels in the basolateral acinar cell membrane. To further investigate the reported sensitivity of the cation channel to intracellular ATP and calcium we used excised inside-out patches. Micromolar Ca2+ concentrations were required for significant channel activation. Application of ATP and ADP to the intracellular surface of the patch blocked channel opening at concentrations between 0.2 and 4 mM. The nonmetabolizable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP, 0.2-2 mM), also effectively blocked channel opening. The subsequent removal of ATP caused a transient increase in channel activity not seen with the removal of ADP or AMP-PNP. Patches isolated into solutions containing 2 mM ATP showed channel activation at micromolar Ca2+ concentrations. Our results show that ATP has two separate effects. The continuous presence of the nucleotide is required for operation of the cation channels and this action seems to depend on ATP hydrolysis. ATP can also close the channel and this effect can be demonstrated in excised inside-out patches when ATP is added to the bath after a period of exposure to an ATP-free solution. This action does not require ATP hydrolysis. Under physiological conditions hormonal stimulation can open the nonselective cation channels and this can be explained by the rise in the intracellular free Ca2+ concentration.  相似文献   

20.
3',5'-Cyclic adenosine monophosphate (cAMP) modulates prostaglandin production in human amnion membranes. The major effects of cAMP are presumably mediated through the phosphorylation of specific regulatory phosphoproteins following cAMP activation of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase and phosphoproteins have not previously been characterized in human amnion. Total homogenates, cytosol, and membrane fractions from human amnion were examined for [3H]cAMP binding activity and cAMP-dependent kinase activity. cAMP-dependent kinase activity was barely detectable in crude amnion fractions. Cytosol was therefore partially purified by DEAE column chromatography for further examination. Two peaks of coincident [3H]cAMP binding and cAMP-dependent kinase activity were demonstrated at 70 and 140 mM NaCl, characteristic of the Type I and Type II cAMP-dependent protein kinase isozymes. [3H]cAMP binding to the material from both peak fractions was saturable and reversible. Scatchard analysis of [3H]cAMP binding to the peak fractions was linear for peak I and curvilinear for peak II. Assuming a one-site model, [3H]cAMP binding to the Type I isozyme showed a KD = 4.17 x 10(-8) M and Bmax = 73 pmole/mg protein; using a two-site model, [3H]cAMP binding to the high-affinity site for the Type II isozyme had a KD = 3.94 x 10(-8) M and Bmax = 6.3 pmole/mg protein. Other cyclic nucleotides competed for these [3H]cAMP binding sites with a potency order of cAMP much greater than cGMP greater than (BU)2cAMP.cAMP caused a dose-dependent increase in cAMP-dependent kinase activity in the peak fractions; half-maximal activation was observed with 5.0 x 10(-8) M cAMP. The ability of cAMP to increase phosphorylation of endogenous proteins in both crude amnion cytosol and cytosol from cultures of amnion epithelial cells was assessed using [32P]ATP, SDS-polyacrylamide gel electrophoresis and autoradiography. cAMP stimulated 32P incorporation into three proteins having Mr = 80,000, 54,000, and 43,000 (P less than .01). Half-maximal 32P incorporation into these proteins occurred at 1.0 x 10(-7) M cAMP. cAMP-dependent kinase is present in human amnion; specific cAMP-enhanced phosphoproteins are also present. Hormones elevating cAMP levels in amnion may exert their effects by activating cAMP-dependent kinase and phosphorylating these phosphoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号