首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of non-mammalian origin that exhibit biological activities in mammalian systems. Examples of these polysaccharides extracted from echinoderms have simple structures, composed of oligosaccharide repeating units within which the residues differ by specific patterns of sulfation among different species. In contrast the algal fucans may have some regular repeating structure but are clearly more heterogeneous when compared with the echinoderm fucans. The structures of the sulfated fucans from brown algae also vary from species to species. We compared the anticoagulant activity of the regular and repetitive fucans from echinoderms with that of the more heterogeneous fucans from three species of brown algae. Our results indicate that different structural features determine not only the anticoagulant potency of the sulfated fucans but also the mechanism by which they exert this activity. Thus, the branched fucans from brown algae are direct inhibitors of thrombin, whereas the linear fucans from echinoderms require the presence of antithrombin or heparin cofactor II for inhibition of thrombin, as reported for mammalian glycosaminoglycans. The linear sulfated fucans from echinoderms have an anticoagulant action resembling that of mammalian dermatan sulfate and a modest action through antithrombin. A single difference of one sulfate ester per tetrasaccharide repeating unit modifies the anticoagulant activity of the polysaccharide markedly. Possibly the spatial arrangements of sulfate esters in the repeating tetrasaccharide unit of the echinoderm fucan mimics the site in dermatan sulfate with high affinity for heparin cofactor II.  相似文献   

2.
Pomin VH  Mourão PA 《Glycobiology》2008,18(12):1016-1027
Sulfated fucans and galactans are strongly anionic polysaccharides found in marine organisms. Their structures vary among species, but their major features are conserved among phyla. Sulfated fucans are found in marine brown algae and echinoderms, whereas sulfated galactans occur in red and green algae, marine angiosperms, tunicates (ascidians), and sea urchins. Polysaccharides with 3-linked, beta-galactose units are highly conserved in some taxonomic groups of marine organisms and show a strong tendency toward 4-sulfation in algae and marine angiosperms, and 2-sulfation in invertebrates. Marine algae mainly express sulfated polysaccharides with complex, heterogeneous structures, whereas marine invertebrates synthesize sulfated fucans and sulfated galactans with regular repetitive structures. These polysaccharides are structural components of the extracellular matrix. Sulfated fucans and galactans are involved in sea urchin fertilization acting as species-specific inducers of the sperm acrosome reaction. Because of this function the structural evolution of sulfated fucans could be a component in the speciation process. The algal and invertebrate polysaccharides are also potent anticoagulant agents of mammalian blood and represent a potential source of compounds for antithrombotic therapies.  相似文献   

3.
Sulfated fucans from marine invertebrates have simple, linear structures, composed of repeating units of oligosaccharides. Most of these polysaccharides contain 3-linked fucosyl units, but each species of invertebrate has a specific pattern of sulfation. No specific enzyme able to cleave or to desulfate these polysaccharides has been described yet. Therefore, we employed an alternative approach, based on mild acid hydrolysis, in an attempt to obtain low molecular-weight derivatives from sulfated fucans. Surprisingly, we observed that sulfated fucans from Lytechinus variegatus and Strongylocentrotus pallidus (but not the sulfated fucans from other species) yield by mild acid hydrolysis oligosaccharides with well-defined molecular size as shown by narrow bands in polyacrylamide gel electrophoresis (PAGE). The sulfated oligosaccharides obtained by mild acid hydrolysis were purified by gel-filtration chromatography, and their structures were identified by (1)H-nuclear magnetic resonance (NMR) spectroscopy, revealing an identical chemical composition for all oligosaccharides. When we followed the acid hydrolysis by (1)H-NMR spectroscopy, we found that a selective 2-desulfation occurs in the fucans from S. pallidus and from L. variegatus. The reaction has two stages. Initially, 2-sulfate esters at specific sites are removed. Then the desulfated units are cleaved, yielding oligosaccharides with well-defined molecular size. The apparent requirement for the selective 2-desulfation is the occurrence of an exclusively 2-sulfated fucosyl unit linked to or preceded by a 4-sulfated residue. Thus, a homofucan from Strongylocentrotus franciscanus resists desulfation by mild acid hydrolysis, because it lacks the neighboring 4-sulfated unit. Overall, our results show a new approach for desulfating sulfated fucans at specific sites and obtaining tailored sulfated oligosaccharides.  相似文献   

4.
Marine alga is an abundant source of sulfated polysaccharides with potent anticoagulant activity. However, several attempts to identify the specific structural features in these compounds, which confer the biological activity, failed due to their complex, heterogeneous structure. We isolated and characterized several sulfated alpha-L-galactans and sulfated alpha-L-fucans from marine invertebrates. In contrast to the algal fucans and galactans, these invertebrate polysaccharides have a simple structure, composed of well-defined units of oligosaccharides. We employed two of these compounds to elucidate their structure-anticoagulant action relationship. Our results indicate that a 2-sulfated, 3-linked alpha-L-galactan, but not an alpha-L-fucan, is a potent thrombin inhibitor mediated by antithrombin or heparin cofactor II. The difference between the activities of these two polysaccharides is not very pronounced when factor Xa replaces thrombin. Thus, the anticoagulant activity of sulfated galactan and sulfated fucan is not merely a consequence of their charge density. The interaction of these polysaccharides with coagulation cofactors and their target proteases are specific. Identification of specific structural requirements in sulfated galactans and sulfated fucans necessary for interaction with coagulation cofactors is an essential step for a more rational approach to develop new anticoagulant and antithrombotic drugs.  相似文献   

5.
The egg jelly coats of sea urchins contain sulfated fucans which bind to a sperm surface receptor glycoprotein to initiate the signal transduction events resulting in the sperm acrosome reaction. The acrosome reaction is an ion channel regulated exocytosis which is an obligatory event for sperm binding to, and fusion with, the egg. Approximately 90% of individual females of the sea urchin Strongylocentrotus purpuratus spawned eggs having only one of two possible sulfated fucan electrophoretic isotypes, a slow migrating (sulfated fucan I), or a fast migrating (sulfated fucan II) isotype. The remaining 10% of females spawned eggs having both sulfated fucan isotypes. The two sulfated fucan isotypes were purified from egg jelly coats and their structures determined by NMR spectroscopy and methylation analysis. Both sulfated fucans are linear polysaccharides composed of 1-->3-linked alpha-L-fucopyranosyl units. Sulfated fucan I is entirely sulfated at the O -2 position but with a heterogeneous sulfation pattern at O -4 position. Sulfated fucan II is composed of a regular repeating sequence of 3 residues, as follows: [3-alpha-L-Fuc p - 2,4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)- 1]n. Both purified sulfated fucans have approximately equal potency in inducing the sperm acrosome reaction. The significance of two structurally different sulfated fucans in the egg jelly coat of this species could relate to the finding that the sperm receptor protein which binds sulfated fucan contains two carbohydrate recognition modules of the C-type lectin variety which differ by 50% in their primary structure.   相似文献   

6.
Pereira MS  Melo FR  Mourão PA 《Glycobiology》2002,12(10):573-580
We attempted to identify the specific structural features in sulfated galactans and sulfated fucans that confer anticoagulant activity. For this study we employed a variety of invertebrate polysaccharides with simple structures composed of well-defined units of oligosaccharides. Our results indicate that a 2-O-sulfated, 3-linked alpha-L-galactan, but not a alpha-L-fucan with a similar molecular size, is a potent thrombin inhibitor mediated by antithrombin or heparin cofactor II. The difference between the activities of these two polysaccharides is not very pronounced when factor Xa replaced thrombin. The occurrence of 2,4-di-O-sulfated units is an amplifying motif for 3-linked alpha-fucan-enhanced thrombin inhibition by antithrombin. If we replace antithrombin by heparin cofactor II, then the major structural requirement for the activity becomes single 4-O-sulfated fucose units. The presence of 2-O-sulfated fucose residues always had a deleterious effect on anticoagulant activity. Overall, our results indicate that the structural requirements for interaction of sulfated galactans and sulfated fucans with coagulation cofactors and their target proteases are stereospecific and not merely a consequence of their charge density and sulfate content.  相似文献   

7.
Vitor H. Pomin 《Biopolymers》2009,91(8):601-609
Efforts in both structural and biological studies of sulfated polysaccharides from marine organisms have increased significantly over the last 10 years. Marine invertebrates have been demonstrated to be a source of glycans with particularly well‐defined chemical structures, although ordered structural patterns can also be found occasionally in algal sources such as red seaweeds. Clear and regular structural features are essential for a good understanding of the biological activities of these marine homopolysaccharides of which sulfated fucans and sulfated galactans are the most studied. Herein, the main structural features (sugar type, sulfation and glycosylation sites, and orientational binding preferences) of both sulfated fucans and galactans are individually reviewed with regard to their specific contributions to two frequently described biological functions: the acrosome reaction (a physiological event of sea‐urchin fertilization), and the anticoagulant and antithrombotic activities (an alternative and highly desirable pharmacological application). © 2009 Wiley Periodicals, Inc. Biopolymers 91: 601–609, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
Sulfated polysaccharides from egg jelly are the molecules responsible for inducing the sperm acrosome reaction in sea urchins. This is an obligatory event for sperm binding to, and fusion with, the egg. The sulfated polysaccharides from sea urchins have simple, well defined repeating structures, and each species represents a particular pattern of sulfate substitution. Here, we examined the egg jellies of the sea urchin sibling species Strongylocentrotus droebachiensis and Strongylocentrotus pallidus. Surprisingly, females of S. droebachiensis possess eggs containing one of two possible sulfated fucans, which differ in the extent of their 2-O-sulfation. Sulfated fucan I is mostly composed of a regular sequence of four residues ([4-alpha-l-Fucp-2(OSO3)-1-->4-alpha-l-Fucp-2(OSO3)-1-->4-alpha-l-Fucp-1-->4-alpha-l-Fucp-1]n), whereas sulfated fucan II is a homopolymer of 4-alpha-l-Fucp-2(OSO3)-1 units. Females of S. pallidus contain a single sulfated fucan with the following repeating structure: [3-alpha-l-Fucp-2(OSO3)-1-->3-alpha-l-Fucp-2(OSO3)-1-->3-alpha-l-Fucp-4(OSO3)-1-->3-alpha-l-Fucp-4(OSO3)-1]n. The egg jellies of these two species of sea urchins induce the acrosome reaction in homologous (but not heterologous) sperm. Therefore, the fine structure of the sulfated alpha-fucans from the egg jellies of S. pallidus and S. droebachiensis, which differ in their sulfation patterns and in the position of their glycosidic linkages, ensures species specificity of the sperm acrosome reaction and prevents interspecies crosses. In addition, our observations allow a clear appreciation of the common structural features among the sulfated polysaccharides from sea urchin egg jelly and help to identify structures that confer finer species specificity of recognition in the acrosome reaction.  相似文献   

9.
We have investigated the structural features of sulfated fucose-containing polysaccharides which are responsible for their selective binding to Strongylocentrotus purpuratus bindin. The data presented demonstrate that the sulfate esters and a molecular weight in excess of approximately 15,000 are required for high affinity binding of the fucans to bindin. Desulfation destroys the binding activity of the fucans, which can be fully restored by chemical resulfation. Fucan fragments of an average molecular weight of 15,000 were nearly as active as the starting material (Mr 10(6)). The observed IC50 value for fragments of Mr congruent to 10,000 and Mr congruent to 5,000 were 1 and 2 orders of magnitude higher, respectively. The binding of fucoidan to bindin is stable in high salt (50% at 1.2 M NaCl) whereas the binding of fucoidan to DEAE-cellulose or polylysine is inhibited by the concentrations of salt normally found in sea water (50% at 0.2 and 0.5 M NaCl, respectively). This result suggests that the binding mechanism is not a simple ionic interaction and that hydrogen bonding and cooperativity may also be important determinants of the binding mechanism. We also found that polyvinyl sulfate binds to bindin with high affinity and inhibits the bindin-mediated agglutination of sea urchin eggs. The results of these investigations suggest that the spatial orientation of the sulfate esters plays a critical role in determining the selectivity of sulfated polysaccharide binding and that the polysaccharide backbone does not play a direct role in the binding mechanism.  相似文献   

10.
Sulfated polysaccharides, like the glycosaminoglycan (GAG) heparin, are known to exhibit anticoagulant properties when certain structural features are present. The structural requirement for this action is well-established for heparin, in which a pentasaccharide motif plays a key role for keeping the high-affinity interaction to antithrombin. Over the last years of this glycomic era, several novel anticoagulant sulfated glycans have been described. Those from marine sources have been awakening special attention mainly because of their impressive anticoagulant effects together with structural uniqueness. The commonest of these glycans are the sulfated fucans (SFs), the sulfated galactans (SGs), and the marine invertebrate GAGs like the fucosylated chondroitin sulfate and ascidian dermatan sulfate. Since these marine sulfated glycans do not bear within their polymeric chains the specific pentasaccharide motif of heparin, other structural features must be necessary to trigger the anticoagulant effect. The objective of this report is to present the anticoagulant motifs of the marine SFs, SGs and GAGs.  相似文献   

11.
Through the perspective of the current glycomics age, fucanomics and galactanomics denote the international projects concerned with the studies of the biomedically active marine sulfated fucose- or galactose-composed polysaccharides, named sulfated fucans (SFs), and sulfated galactans (SGs), respectively. SFs and SGs are isolated from algae or marine invertebrates. The range of therapeutic actions of SFs and SGs is impressively broad. When certain structural requirements are found, some SFs and SGs may exhibit beneficial properties in inflammation, nociception, hemostasis (coagulation and thrombosis), vascular biology (angiogenesis), oncology, oxidative-stress, and virus infections. Although many biomedical applications for SFs and SGs have been pointed out over the past two decades, only inflammation, hemostasis, cancer, and vascular biology have their mechanisms of action satisfactorily elucidated. In addition, advanced structure-function relationships have been achieved only for the anticoagulant and antithrombotic activities, in which glycans of well-defined structures have been assayed. Because of this, the activities of SFs and SGs in stopping the clot and thrombus formation represent the closest therapeutic areas of having these glycans truly explored for drug development. Here, through an analytical viewpoint, we present the common methods and protocols employed to achieve such advanced structure-function relationships of SFs and SGs in anticoagulation and antithrombosis.  相似文献   

12.
Sulphated polysaccharides have many biological functions, which depend on binding of highly specific carbohydrate structures to proteins. NMR spectroscopy is a technique capable of detailed structural elucidation of these polysaccharides, and can be used in applications ranging from routine analysis to research into covalent and conformational aspects of polysaccharide structure. This technique can be used to characterise sequence variations in heparin samples. The NMR-determined solution conformation of heparin has been used to predict binding sites on the surface of heparin-binding proteins. Sulphation patterns for dermatan sulphates of marine invertebrates have been determined. Their anticoagulant effects depend on an exact pattern of sulphate substitution. A small alteration in dermatan sulphate structure, from 4-O-sulphated to 6-O-sulphated galactosamine, leads to almost complete loss of anticoagulant activity in spite of an overall high level of sulphation. A fucosylated chondroitin sulphate isolated from sea cucumber has anticoagulant and antithrombotic activity depending on its sulphated fucose branches. The anticoagulant activity of algal fucans has been compared with that of regular, linear sulphated fucans from marine echinoderms; again high activity appears to correlate with the presence of sulphated fucose branches.  相似文献   

13.
The egg jellies of sea urchins contain sulfated polysaccharides with unusual structures, composed of linear chains of l-fucose or l-galactose with well-defined repetitive units. The specific pattern of sulfation and the position of the glycosidic bond vary among sulfated polysaccharides from different species. These polysaccharides show species specificity in inducing the acrosome reaction, which is a critical event for fertilization. Females of the sea urchin Lytechinus variegatus spawn eggs containing a sulfated fucan with the repetitive sequence [3-alpha-L-Fucp-2(OSO(3))-1 --> 3-alpha-L-Fucp-4(OSO(3))-1 --> 3-alpha-L-Fucp-2,4(OSO(3))-1 --> 3-alpha-L-Fucp-2(OSO(3))-1](n). We now observe that, close to winter, a period of decreased fertility for the sea urchin, the females synthesize a distinct sulfated fucan with a simple structure, composed of 4-sulfated, 3-linked alpha-fucose residues. This sulfated fucan is inactive when tested in vitro for the acrosome reaction using homologous sperm. The amount of egg jellies spawned by females (and their constituent sulfated polysaccharides) varied greatly throughout the year. Apparently, there is a correlation between the temperature of the sea water and the expression of the 4-sulfated, 3-linked sulfated fucan. Overall, we described the occurrence of two isotypes of sulfated fucan in the egg jelly of the sea urchin L. variegatus, which differ in their biological activity and may be involved in the periodicity of the reproductive cycle of the invertebrate.  相似文献   

14.
This study analyzed sulfated polysaccharides, such as fucans, from the brown alga Lobophora variegata to verify their antioxidant activity in vitro, antitumoral effect on human colon adenocarcinoma cell line HT-29, and anti-inflammatory activity. Sulfated polysaccharide fractions containing fucans were obtained after fractionation with increasing volumes (v) of acetone (0.3–2.0 v). The polysaccharide was eluted with 1.5 v of acetone and named F1.5. The results showed that F1.5 contained a high yield. Chemical and structure analyses were performed by infrared spectroscopy, electrophoresis in agarose gel, and chemical dosages (sugar, protein, phenolic compounds, and sulfate). We observed that this sulfated polysaccharide had antioxidant activity and antitumoral effect. Anti-inflammatory activity in vivo of F1.5 was observed in the croton oil mouse-ear model at 75 mg kg-1. The results were correlated with histopathological analysis.  相似文献   

15.
Sulfated fucans are matrix polysaccharides from marine brown algae, consisting of an alpha-L-fucose backbone substituted by sulfate-ester groups, masked with ramifications, and containing other monosaccharide residues. We here report on the characterization of a novel glycoside hydrolase (FcnA) specific for the degradation of sulfated fucans. This glycoside hydrolase was purified to electrophoretic homogeneity from a Flavobacteriaceae referred to as SW5. The gene fcnA was cloned and sequenced (3021 nucleotides), and the protein (1007 amino acids) was produced in Escherichia coli. FcnA exhibited a modular architecture consisting of a 400-residue-long N-terminal domain followed by three repeated domains predicted to adopt an immunoglobulin fold and by an 80-amino acid-long C-terminal domain. A truncated recombinant protein encompassing the N-terminal domain and the immunoglobulin-like repeats was shown to retain the enzyme activity. The N-terminal catalytic domain shared approximately 25% of sequence identity with two patented fucanase genes, and these three fucanases delineate a new family of glycoside hydrolases. As shown by size-exclusion chromatography (SEC) and 1H-NMR analyses, the fucanase FcnA proceeds according to an endolytic mode of action and cleaves the alpha-(1-->4) glycosidic linkages within the blocks of repeating motifs [-->4)-alpha-L-fucopyranosyl-2,3-disulfate-(1-->3)-alpha-L-fucopyranosyl-2-sulfate-(1-->]n.  相似文献   

16.
In recent years, many compounds having potent antiviral activityin cell culture have been detected and some of these compoundsare currently undergoing either preclinical or clinical evaluation.Among these antiviral substances, naturally occurring sulfatedpolysaccharides and those from synthetic origin are noteworthy.Recently, several controversies over the molecular structuresof sulfated polysaccharides, viral glycoproteins, and cell-surfacereceptors have been resolved, and many aspects of their antiviralactivity have been elucidated. It has become clear that theantiviral properties of sulfated polysaccharides are not onlya simple function of their charge density and chain length butalso their detailed structural features. The in vivo efficacyof these compounds mostly corresponds to their ability to inhibitthe attachment of the virion to the host cell surface althoughin some cases virucidal activity plays an additional role. Thisreview summarizes experimental evidence indicating that sulfatedpolysaccharides might become increasingly important in drugdevelopment for the prevention of sexually transmitted diseasesin the near future.  相似文献   

17.
The evolution of barriers to inter-specific hybridization is a crucial step in the fertilization of free spawning marine invertebrates. In sea urchins, molecular recognition between sperm and egg ensures species recognition. Here we review the sulfated polysaccharide-based mechanism of sperm-egg recognition in this model organism. The jelly surrounding sea urchin eggs is not a simple accessory structure; it is molecularly complex and intimately involved in gamete recognition. It contains sulfated polysaccharides, sialoglycans and peptides. The sulfated polysaccharides have unique structures, composed of repetitive units of alpha-L-fucose or alpha-L-galactose, which differ among species in the sulfation pattern and/or the position of the glycosidic linkage. The egg jelly sulfated polysaccharides show species-specificity in inducing the sperm acrosome reaction, which is regulated by the structure of the saccharide chain and its sulfation pattern. Other components of the egg jelly do not possess acrosome reaction inducing activity, but sialoglycans act in synergy with the sulfated polysaccharide, potentiating its activity. The system we describe establishes a new view of cell-cell interaction in the sea urchin model system. Here, structural changes in egg jelly polysaccharides modulate cell-cell recognition and species-specificity leading to exocytosis of the acrosome. Therefore, sulfated polysaccharides, in addition to their known functions as growth factors, coagulation factors and selectin binding partners, also function in fertilization. The differentiation of these molecules may play a role in sea urchin speciation.  相似文献   

18.
Sulfated fucans, the complex polysaccharides from brown seaweeds, possess various biological activities. To understand the structure activity relationship of sulfated fucans, we have investigated the structural features of one such polymer from Padina tetrastromatica using standard methods of carbohydrate structural analysis. We report a novel structural motif for this polymer. The average structure of this macromolecule that has a molecular mass of 25 kDa differs from the previous models in three respects. First, the core region of this macromolecule is composed primarily of α-(1 → 2)- and α-(1 → 3)-linked fucopyranosyl residues. Sulfate groups, when present are located at position 4 and 2 of fucosyl residues. Secondly, fucose and xylose is attached to this polymer to form branch points, one for every two residues within the chain. Finally, this macromolecule contained smaller amount of sulfate (0.21 mol of sulfate per mol of deoxyhexose).  相似文献   

19.
Salgado LT  Andrade LR  Filho GM 《Protoplasma》2005,225(1-2):123-128
The brown alga Padina gymnospora has been studied due to their ecological significance and biochemical characteristics, including its high capability of heavy-metal accumulation. It has been suggested that the fucans are among the main polysaccharides related to metal binding and precipitation in cell walls. The main purpose of this work was to determine the localization of specific monosaccharides in P. gymnospora cells. In this way, the lectins Ulex europaeus agglutinin and Canavalia ensiformis concanavalin A with specificity to alpha-L-fucose and to terminal residues of alpha-D-glucosyl and alpha-D-mannosyl, respectively, were applied in young individuals. These revealed a preferential distribution of alpha-L-fucose at cell walls near the external surface in cortical cells and near the plasmalemma in cortical and medullar cells. The distribution of alpha-L-fucose in cell walls indicates the distribution of sulfated polysaccharides (sulfated fucans) that colocalize with the heavy-metal granules (Zn and Cd) described in previous works. Therefore, our results suggest that alpha-L-fucose participates in the nucleation and immobilization of heavy metals in P. gymnospora cell walls. An intense labeling of U. europaeus agglutinin and a weak labeling of concanavalin A was also observed in physodes. X-ray microanalysis revealed the presence of zinc, sulfur, and calcium in physodes of algae collected in a heavy-metal-contaminated area. Besides the affinity between polyphenolic compounds and heavy metals, it is suggested that the mechanism of metal binding by physodes could be related to the presence of sulfated fucans.  相似文献   

20.
A new method combining ion-exchange displacement chromatography with centrifugal partition chromatography (CPC) was used for the fractionation of partially depolymerized fucans (polysulphated polysaccharides). The ion-exchanger was Amberlite LA2, a high-molecular-mass liquid secondary amine miscible with most common organic solvents and immiscible with aqueous solutions. Ion-exchange displacement centrifugal partition chromatography was performed with LA2 in methyl isobutyl ketone (MiBK) as the stationary phase, water as the mobile phase, Cl as the carrier and OH as the displacer. A complex mixture of partially depolymerized fucans was resolved into adjacent families characterized by their peak molecular mass and polydispersity. The Dubois test (sugar) and the azur A test (SO3) confirmed the displacement mode of the process, and size-exclusion chromatographic controls confirmed its efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号