首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of suberized and lignified barriers in the exodermis is suggested to be part of a suite of adaptations to flooded or waterlogged conditions, adjusting transport of solutes and gases in and out of roots. In this study, the composition of apoplasmic barriers in hypodermal cell walls and oxygen profiles in roots and the surrounding medium of four Amazon tree species that are subjected to long-term flooding at their habitat was analyzed. In hypodermal cell walls of the deciduous tree Crateva benthami, suberization is very weak and dominated by monoacids, 2-hydroxy acids, and omega-hydroxycarboxylic acids. This species does not show any morphological adaptations to flooding and overcomes the aquatic period in a dormant state. Hypodermal cells of Tabernaemontana juruana, a tree which is able to maintain its leaf system during the aquatic phase, are characterized by extensively suberized walls, incrusted mainly by the unsaturated C(18) omega-hydroxycarboxylic acid and the alpha,omega-dicarboxylic acid analogon, known as typical suberin markers. Two other evergreen species, Laetia corymbulosa and Salix martiana, contained 3- to 4-fold less aliphatic suberin in the exodermis, but more than 85% of the aromatic moiety of suberin are composed of para-hydroxybenzoic acid, suggesting a function of suberin in pathogen defense. No major differences in the lignin content among the species were observed. Determination of oxygen distribution in the roots and rhizosphere of the four species revealed that radial loss of oxygen can be effectively restricted by the formation of suberized barriers but not by lignification of exodermal cell walls.  相似文献   

2.
植物功能性状之间的协调性揭示了其适应特定生境的主要策略,而植物早期生长与功能性状可能具有很大关联性。为探讨林下引入耐阴树种的根、茎、叶功能性状协调性及其与生长的关系,研究了杉木人工林林下引入5种常绿阔叶树种(洒金叶珊瑚、杨桐、蚊母树、栀子和海桐)的生长率(树高和地径相对增长率)以及27个根茎叶形态、生理性状指标。结果表明:(1)由主成分分析(Principal component analysis,PCA)可知耐阴树种种间根茎功能性状关联更紧密。此外,种间根、茎性状的变异系数均小于叶面积;(2)耐阴树种种间和种内关键性状与生长率网络关联性差异较大。在种间水平上,生长率与大部分叶性状显著正相关,与根茎性状多为显著负相关;在种内水平上,关键性状与生长率关系网更加复杂;(3)树高相对增长率是种间和种内关系网中心性最高的生长率指标。种间中心性最高的性状指标是叶面积;叶、茎生物量占比和根干物质含量是种内中心性最高的性状指标。但只有叶面积与树高相对增长率在种间和种内均显著正相关,因此,叶面积更适合作为指示林下耐阴树种生长率变化的性状。总体上,耐阴树种叶性状对生长率的调控要强于根茎性状,其中引入较大叶面积的常绿阔叶树种可能更有利于杉木纯林的人促更新和高效复层林的构建。  相似文献   

3.
刘长成  刘玉国  郭柯 《植物生态学报》2011,35(10):1070-1082
喀斯特石漠化是我国西南喀斯特地区最严重的生态环境问题, 生境干旱是限制该地区植物生长的主要因素之一, 掌握喀斯特植被不同演替阶段不同生活型植物对干旱胁迫的适应策略有助于提高植被恢复的成功率。通过人工模拟4种干旱强度, 测定叶片水势、气体交换、叶绿素荧光、光合色素含量、渗透调节物质浓度、抗氧化酶活性以及生物量, 研究了喀斯特地区4种不同生活型植物幼苗对干旱胁迫的适应策略。这4种植物为常绿灌木火棘(Pyracantha fortuneana)、落叶灌木小果蔷薇(Rosa cymosa)、常绿乔木猴樟(Cinnamomum bodinieri)和落叶乔木圆果化香树(Platycarya longipes)。结果表明: 随着干旱程度的加深, 4种植物幼苗的叶片水势、光合能力、叶绿素含量、生物量增长、叶重比(LMR)、叶面积比(LAR)和比叶面积(SLA)逐渐下降, 而热耗散(NPQ)、类胡萝卜素与叶绿素含量比值、丙二醛含量和根重比(RMR)逐渐上升; 圆果化香树和猴樟的水分利用效率(An/gs)、渗透调节物质浓度和抗氧化酶活性呈先升高后降低的趋势, 而火棘和小果蔷薇的An/gs、脯氨酸含量和超氧化物歧化酶活性呈上升趋势。严重干旱下, 火棘和小果蔷薇幼苗的叶片水势和叶绿素含量下降较少, 具有较高的光合能力和生物量增长, 这主要是由于它们具有较低的SLALAR、较高的NPQAn/gs以及较高的渗透调节能力和抗氧化保护能力。中度干旱下, 猴樟幼苗叶片水势下降很少, LMRLAR也较高, 脯氨酸含量和抗氧化酶活性非常高。但在严重干旱下, 其叶片水势、LMRLAR和生物量增长大幅度下降, 最大光化学效率和光合速率也非常低, 渗透调节能力与抗氧化酶活性大幅度下降至正常水平以下。水分好的条件下, 圆果化香树幼苗具有较高的RMR以吸收充足的水分, 具有较高的LAR和叶绿素含量, 保证了生物量的大量积累。然而, 干旱胁迫致使其生物量大幅度下降, 主要是由于LMRLAR、气体交换和叶绿素含量的大量下降以减少蒸腾面积、水分散失和对光能的吸收。研究结果表明, 火棘、小果蔷薇和猴樟幼苗主要采用耐旱策略, 其中猴樟抗严重干旱的能力较弱; 圆果化香树幼苗对干旱胁迫更为敏感, 主要采取避旱策略。  相似文献   

4.
1. Plants of Bellis perennis, Dactylis glomerata and Poa annua were grown from seed in controlled-environment cabinets at either 16 or 20 °C; at the higher temperature all three species had increased total dry mass and leaf area when assessed on the basis of chronological time. On the basis of thermal time (summation of degree-days above 0 °C; days °C) temperature decreased the dry mass in P. annua.
2. Partitioning was assessed as a change in the allometric coefficients relating shoot and root dry mass, leaf and plant mass, leaf area and plant mass, and leaf area and leaf mass. Of the 12 relationships examined only three were affected by temperature: there was increased partitioning towards the shoot relative to the root in D. glomerata and increased partitioning towards leaf area rather than leaf mass in D. glomerata and B.perennis .
3. Root respiration was unaffected by temperature of growth in D. glomerata and P.annua but was lower in B. perennis grown at elevated temperature.
4. Root respiration acclimated to temperature in P. annua and B. perennis (i.e. when measured at the same temperature, respiration was higher in plants grown at 16 °C).
5. Root soluble carbohydrate concentration was unaffected by temperature of growth in any of the species. Feeding sucrose to the roots for a short period had no effect on the rate of respiration of B. perennis or D. glomerata but increased root respiration of P. annua .  相似文献   

5.
植物叶性状的权衡关系反映了植物对环境的高度适应性及其在复杂生境下的自我调控能力,了解半干旱区城市绿化树种叶性状间的权衡关系,比较不同生长型(针叶和阔叶)树种异速生长的差异有助于进一步认识植物的进化机制。以兰州市典型绿化树种(13种针叶树和47种阔叶树)为对象,测量部分叶性状,采用标准化主轴估计和系统独立比较分析的方法比较不同性状间的权衡关系。结果表明:不同生长型树种叶面积、叶体积与叶片干重之间均为等速生长关系,针叶和阔叶树种间并无显著差异;叶厚与叶面积间为"此消彼长"的权衡关系,但并不显著;阔叶叶长与叶宽间异速生长斜率为0.764。兰州市典型绿化树种叶性状间的权衡可能是长期适应黄土高原特殊生境的自适应过程,也说明部分性状间存在协变关系,阔叶绿化树种的权衡表明其符合"快速投资-收益"特征。  相似文献   

6.
Trade-offs between acquisition capacities for aboveground and belowground resources were investigated by studying the phenotypic plasticity of leaf and root traits in response to different irradiance levels at low nutrient supply. Two congeneric grasses with contrasting light requirements, Dactylis glomerata and D. polygama, were used. The aim was to analyze phenotypic covariation in components of leaf area and root length in response to above- and belowground resource limitation and the consequences of this variation for resource acquisition and plant growth. At intermediate shading (30 and 20% of full sunlight) the plants were able to maintain their total root length, despite a strongly increased total leaf area and a reduced biomass allocation to roots. This was associated with an unaltered or slightly increased nutrient uptake and growth. At 5.5% relative irradiance, growth was severely reduced, especially in the shade-tolerant D. polygama. The results show that constraints on acquisition capacities for aboveground and belowground resources, caused by biomass allocation, may be alleviated by plasticity in other traits such as tissue-mass density and thickness of roots and leaves. The results also suggest different adaptive constraints for phenotypic plasticity and for genetically determined interspecific variation. Phenotypic plasticity tends to maximize resource acquisition and growth rate in the short term, whereas the higher tissue-mass density and the longer leaf life-span of shade-tolerant species indicate reduced loss rates as a more advantageous species-specific adaptation to shade in the long term.  相似文献   

7.
Elucidating the function of and patterns among plant traits above ground has been a major research focus, while the patterns and functioning of belowground traits remain less well understood. Even less well known is whether species differences in leaf traits and their associated biogeochemical effects are mirrored by differences in root traits and their effects. We studied fine root decomposition and N dynamics in a common garden study of 11 temperate European and North American tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pseudotsuga menziesii, Quercus robur, Quercus rubra and Tilia cordata) to determine whether leaf litter and fine root decomposition rates are correlated across species as well as which species traits influence microbial decomposition above versus below ground. Decomposition and N immobilization rates of fine roots were unrelated to those of leaf litter across species. The lack of correspondence of above- and belowground processes arose partly because the tissue traits that influenced decomposition and detritus N dynamics different for roots versus leaves, and partly because influential traits were unrelated between roots and leaves across species. For example, while high hemicellulose concentrations and thinner roots were associated with more rapid decomposition below ground, low lignin and high Ca concentrations were associated with rapid aboveground leaf decomposition. Our study suggests that among these temperate trees, species effects on C and N dynamics in decomposing fine roots and leaf litter may not reinforce each other. Thus, species differences in rates of microbially mediated decomposition may not be as large as they would be if above- and belowground processes were working in similar directions (i.e., if faster decomposition above ground corresponded to faster decomposition below ground). Our results imply that studies that focus solely on aboveground traits may obscure some of the important mechanisms by which plant species influence ecosystem processes.  相似文献   

8.
分析干瘠立地中不同树种根功能性状的变化及差异,研究不同树种对干瘠环境的适应对策。试验材料为林龄、林分密度相对一致的石质山区主要观赏树种(黄栌、山桃、栓皮栎),采用挖掘法获取树木细根,测定细根形态参数。根据田间持水量和石砾含量分别设置4个干瘠梯度(轻度、中度、重度、极度),对比分析北京干瘠地3种树种根功能性状,探讨干瘠立地中不同树种根系形态的差异及其对特殊生境的适应。结果表明:干旱、瘠薄均对树木的根功能性状产生影响,但对不同性状以及不同树种的影响程度具有差异,其中对山桃根系的影响最大;3种树种根功能性状在不同干瘠等级下存在显著变化,同一性状的变化因树种不同而异。从轻度到极度干旱,3种树种的RL均逐渐减小,但是黄栌变化不显著;黄栌、栓皮栎RTD随干瘠的加剧而减小,而山桃随干瘠的加剧而增加;黄栌和山桃SRL随干旱、瘠薄的加剧,表现出一致的规律,即从轻度到极度,其SRL随即减小,而栓皮栎SRL随干旱、瘠薄的加剧而增大;随干瘠的加剧,黄栌SRA显著减小,山桃、栓皮栎SRA随干瘠的加剧而增大。树木对干瘠环境的变化都有一定的响应能力及适应对策,能够通过自身的形态变化来适应不断变化的环境,但不同物种对干瘠环境变化的适应途径不同,通过权衡碳分配、碳消耗采取了相应的生态适应策略,不同树种间存在明显差异。本研究3种树种中,黄栌在干瘠环境下根系性状变化不显著,耐干瘠能力较强;干瘠胁迫对山桃根系性状影响显著,山桃通过主动调节根系形态变化来适应不断变化的环境,具有较强的抗干瘠能力;栓皮栎的细根数量多,吸收土壤水分、养分能力较强,能够在干瘠环境中快速生长。  相似文献   

9.

Abiotic fluctuations in montane ecosystems trigger changes in the hydric functional traits of tree species. These variations are better recognized in tree species inhabiting montane humid ravine slopes with different elevation, as is the case of many areas across the Mexican Neotropical montane forests. Little is known about the response of tree towards elevation gradients and abiotic changes. In this study, we analyzed the leaf morphological variation of two rare and Mexican endemic Symplocos species (S. coccinea and S. speciosa) occurring eastern Mexico on sites with different microclimate and elevation but similar floristic composition. We quantified how the abiotic factors (i.e. canopy openness, soil temperature, soil moisture, and litter depth) and site elevation influence the leaf traits of these tree species. Symplocos coccinea (with toothed leaf margins) is adapted to high humid conditions and high canopy coverage, while S. speciosa (with almost entire leaf margins) is resilient to environments with moisture deficit and high temperatures. Process-based research with fine-spatial scales at montane ecosystems are needed to understand the resilience and morphological variations of montane tree species under climate change worldwide. In this study, we confirmed that the Symplocos leaf morphological traits (i.e. leaf length, leaf width, leaf shape index, leaf base angle and vein density) are strongly influenced by abiotic conditions (i.e. canopy openness, litterfall depth, soil moisture and soil temperature).

  相似文献   

10.
基于ITS序列的栓菌属部分种的分子分类初步研究   总被引:2,自引:0,他引:2  
栓菌属 Trametes 的一些近缘种宏观和微观形态学非常相近,传统分类学方法难于对其进行准确分类定位。测定了 34 个分类单元的 ITS(包括 5.8SrDNA)序列,并对得到的 43 个分类单元的 ITS 序列进行系统发生分析,构建了聚类分析树状图。该树状图显示,栓菌属类群与其他属类群明显分开,Trametes versicolor 聚类到一个高支持率的独立分支。形态学上定名为 T. hirsuta 和 T. pubescens 物种聚类到同一高支持率的独立分支,试验分析表明这两个种应视为同一物种。  相似文献   

11.
Fluorescent in situ hybridization (FISH) was applied to diploid and tetraploid subspecies of alfalfa (Medicago sativa L.) to investigate the distribution of rRNA genes and to utilize the sites of 18S-5.8S-25S rDNA and 5S rDNA sequences as markers for studying the genome evolution within the species. Medicago glomerata Balb., the species considered to be the ancestor of alfalfa, was included in this study in order to obtain more information on the phylogenetics of alfalfa. Simultaneous in situ hybridization was performed with the probes pTa71 and pXVI labeled with digoxigenin and biotin, respectively. In the diploid taxa, M. glomerata, M. sativa ssp. coerulea Schmalh and ssp. falcata Arcangeli, the 18S-5.8S-25S rDNA sequences were mapped to two sites corresponding to the secondary constrictions of the nucleolar chromosome pair, while 5S rDNA appeared to be distributed in two pairs of sites. Chromosomes carrying 5S loci could be distinguished on the basis of their morphological characteristics. The number of rDNA sites detected in the tetraploid M. sativa ssp. falcata and ssp. sativa (L.) L. & L. were twice the number found in the respective diploid ssp. falcata and ssp. coerulea. The results of this study show that the distribution of ribosomal genes was maintained during the evolutionary steps from the primitive diploid to the cultivated alfalfa. Modifications of the number of rRNA loci were not observed. The importance of in situ hybridization for improving karyotype analysis in M. sativa L. is discussed.  相似文献   

12.
Conservative survival strategy of plants growing in harsh karst habitats is observed from the view of plant functional traits, such as morphological traits and ecological stoichiometry. However, whether the plant communities in karst forests with high species turnover adopt a conservative strategy remains undetermined. This study comprehensively investigated the characteristics of functional traits of dominant plant species in four forests (i.e. Platycarya strobilacea, Quercus fabri, Quercus variabilis, and Pinus massoniana forests) in a trough‐valley karst watershed in Northern Guizhou Province, Southwestern China to explore the adaptation strategy of karst forests at the community level. At the organ and the species levels, traits differed among species, and the leaf and the bark morphological traits and root C:N:P ecological stoichiometry presented large interspecific variations. At the community level, the P. massoniana forest presented the lowest specific root length and dry matter content and tissue density of roots, branch, twig, and bark; the Q. fabri and the Q. variabilis forests displayed low specific leaf area and high dry matter content and tissue density of roots, branch, and twig; and the Platycarya strobilacea forest exhibited high specific leaf area. The P. massoniana forest was subjected to N and P colimitation, and the three other broad‐leaved forests were limited by P supply. The community‐weighted means rather than the arithmetic means of traits were preferential to represent the trait characteristics at the community level. From the view of plant functional traits at the community level, karst forests develop multiple functional traits like low specific leaf area, high dry matter content and tissue density of leaf, roots, branch, and twig, and decrease N and P investments in leaf for a conservative survival strategy to adapt to harsh habitats.  相似文献   

13.
Trees inhabiting central Amazon floodplain forests are subjected to an annual flood-pulse lasting up to 10 months, leading to both oxygen shortage and accumulation of high levels of reduced iron. To understand the mechanisms underlying the adaptation to these conditions, cuttings from three tree species typical of várzea inundation forests (Salix martiana, Tabernaemontana juruana, and Laetia corymbulosa), were cultivated either aerobically or anaerobically under different iron regimes in greenhouse experiments. Although all species are considered to be non-deciduous, Laetia corymbulosa lost and formed new leaves continuously during the experimental period. Although relative growth rates (RGRs) of all species declined in response to hypoxic conditions, no marked changes in RGRs were apparent among different iron concentrations in the growth medium, ranging from 50 to 500 µM, supplied in ferrous form as FeSO4. Whereas roots exhibited color changes due to the formation of iron precipitates, no visual symptoms of iron toxicity were observed in the leaves. Iron concentration increased in all organs of all species with increasing iron concentrations in the medium, except for leaves of S. martiana and T. juruana, suggesting an effective restriction of iron influx into the leaf symplast. Although the leaf iron concentration was at the upper limit of the critical range at high external iron levels, it is suggested that internal active transport rather than intracellular detoxification mechanisms contribute to the tolerance to supra-optimal iron levels. Anatomical traits such as suberization of peripheral cell walls and the formation of aerenchyma appear to be of minor importance for Fe tolerance.  相似文献   

14.
? Although linkages of leaf and whole-plant traits to leaf lifespan have been rigorously investigated, there is a limited understanding of similar linkages of whole-plant and fine root traits to root lifespan. In comparisons across species, do suites of traits found in leaves also exist for roots, and can these traits be used to predict root lifespan? ? We observed the fine root lifespan of 12 temperate tree species using minirhizotrons in a common garden and compared their median lifespans with fine-root and whole-plant traits. We then determined which set of combined traits would be most useful in predicting patterns of root lifespan. ? Median root lifespan ranged widely among species (95-336?d). Root diameter, calcium content, and tree wood density were positively related to root lifespan, whereas specific root length, nitrogen (N)?:?carbon (C) ratio, and plant growth rate were negatively related to root lifespan. Root diameter and plant growth rate, together (R(2) =?0.62) or in combination with root N?:?C ratio (R(2) =?0.76), were useful predictors of root lifespan across the 12 species. ? Our results highlight linkages between fine root lifespan in temperate trees and plant functional traits that may reduce uncertainty in predictions of root lifespan or turnover across species at broader spatial scales.  相似文献   

15.
The classical “low latitude–high defense” hypothesis is seldom supported by empirical evidence. In this context, we tested latitudinal patterns in the leaf defense traits of deciduous broadleaved (DB) and evergreen broadleaved (EGB) tree species, which are expected to affect herbivore diversity. We examined the co-occurrence of leaf defense traits (tannin and phenol content, leaf mechanical strength, leaf dry matter content, leaf mass per area, and leaf thickness) in 741 broadleaved tree species and their correlations with species geographical range in East Asian island flora. We discovered contrasting latitudinal defense strategy gradients in DB and EGB tree species. DB species employed chemical defenses (increasing tannin and phenol content) at higher latitudes and physical defenses (softer and thinner leaves) at lower latitudes, whereas EGB tree species exhibited opposite latitudinal defense patterns. The “low latitude high defense” hypothesis included a paradoxical aspect in chemical and physical defense traits across broadleaved tree species. To reconcile paradoxical defense strategies along the latitudinal gradient, we conclude that interactive correlations among leaf traits are controlled by leaf longevity, which differs between DB and EGB tree species.  相似文献   

16.

Background and Aims

We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species.

Methods

In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson''s single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots.

Key Results

From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations.

Conclusions

Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context.  相似文献   

17.
In the conifer genus Juniperus (Cupressaceae), many species are increasing rapidly in distribution, abundance, and dominance in arid and semiarid regions. To help understand the success of junipers in drier habitats, we studied hydraulic traits associated with their water stress resistance, including vulnerability to xylem cavitation, specific conductivity (K(S)), tracheid diameter, conduit reinforcement, and wood density in stems and roots, as well as specific leaf area (SLA) of 14 species from the United States and the Caribbean. A new phylogeny based on DNA sequences tested the relationships between vulnerability to cavitation and other traits using both traditional cross-species correlations and independent contrast correlations. All species were moderately to highly resistant to water-stress-induced cavitation in both roots and shoots. We found strong phylogenetic support for two clades previously based on leaf margin serration (serrate and smooth). Species in the serrate clade were 34-39% more resistant to xylem cavitation in stems and roots than were species in the smooth clade and had ~35% lower K(S) and 39% lower SLA. Root and stem resistance to cavitation and SLA were all highly conserved traits. A high degree of conservation within clades suggests that hydraulic traits of Juniperus species strongly reflect phylogenetic history. The high resistance to cavitation observed may help explain the survival of junipers during recent extreme droughts in the southwestern United States and their expansion into arid habitats across the western and central United States.  相似文献   

18.
Photosynthesis is a main driver of plant performance and varies between and within species. This study investigates the effects of plant functional traits as well as abiotic site conditions on the intra- and interspecific variability of photosynthetic performance measured via maximum carboxylation capacity (Vcmax) in five widespread species (Campanula glomerata, Centaurea jacea, Plantago media, Salvia pratensis and Trifolium montanum) and on 18 dry calcareous grassland sites across Europe. In addition to that we assessed plant traits associated with plant performance like specific leaf area, leaf nitrogen and carbon status and stable nitrogen isotope content in parallel on each individual. Climate variables, site characteristics and soil nutrients were recorded to test whether abiotic conditions had a direct impact on photosynthesis rates, or whether that influence was mitigated by their impact on the leaf functional traits measured. Leaf functional traits and abiotic site conditions had an influence on Vcmax both, within and between species. However, the results differed between these scales with differences between species, where mainly T. montanum responded differently than the other species. Leaf nitrogen content had the strongest link of all parameters analysed to Vcmax and was positively related to it both, intra- and interspecifically. Slope, soil nitrogen, irradiation and temperature influenced Vcmax yet we found that mainly leaf traits had direct effects on Vcmax when we analysed all traits and site conditions together using structural equation models. However, the indirect effects of abiotic site conditions via changing leaf functional traits were strong. We thus conclude that abiotic site conditions change Vcmax mainly via affecting leaf functional traits, thus representing an indirect effect. This effect has to be considered when using abiotic site conditions and leaf functional traits for forecasting and measuring photosynthesis.  相似文献   

19.
Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (A max), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, A max, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.  相似文献   

20.
为揭示不同菌根类型树种细根化学计量学性状对N添加的塑性响应,在福建省建瓯市万木林自然保护区常绿阔叶林内选择外生菌根树种罗浮栲(Castanopsis faberi)和内生菌根树种木荷(Schima superba)为研究对象,采用根袋法开展N添加试验,细根在根袋内生长半年后测定化学计量学指标(C、N、P、C/N、N/P、C/P)。结果表明:根序对细根化学计量学性状有显著影响,随着根序的增加,罗浮栲与木荷细根C浓度、C/N、C/P明显增加,N浓度与P浓度明显下降。N添加对细根C、N浓度均有极显著的促进作用,但对细根P浓度影响不显著,从而导致细根C/N维持稳定,但N/P、C/P升高,细根受P限制增加。细根化学计量学性状对N添加的塑性响应在不同序级间以及在外生菌根树种罗浮栲和内生菌根树种木荷之间均无显著差异。结论表明,研究所选内生、外生菌根树种细根化学计量学性状对N添加具有基本相似的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号