首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The supply of sucrose to leaf segments from light-grown bean seedlings caused a substantial increase in substrate inducibility of in vivo and in vitro nitrate reductase activity but only a small increase in total protein. Cycloheximide and chloramphenicol inhibited the increase in enzyme activity by nitrate and sucrose. The in vivo decline in enzyme activity in nitrate-induced leaf segments in light and dark was protected by sucrose and nitrate. The supply of NADH also protected the decline in enzyme activity, but only in the light. In vitro stability of the extracted enzyme was, however, unaffected by sucrose. The size of the metabolic nitrate pool was also enhanced by sucrose. The experiments demonstrate that sucrose has a stimulatory effect on activity or in vivo stability ' of nitrate reductase in bean leaf segments, which is perhaps mediated through increased NADH level and/or mobilization of nitrate to the metabolic pool.  相似文献   

2.
The ability of Pseudomonas syringae pv. syringae to use nitrate as a nitrogen source in culture and on leaves was assessed. Substantial amounts of leaf surface nitrate were detected directly and by use of a bioreporter of nitrate on bean plants grown with a variety of nitrogen sources. While a nitrate reductase mutant, P. syringae ΔnasB, exhibited greatly reduced growth in culture with nitrate as the sole nitrogen source, it exhibited population sizes similar to those of the wild-type strain on leaves. However, the growth of the ΔnasB mutant was much less than that of the wild-type strain when cultured in bean leaf washings supplemented with glucose, suggesting that P. syringae experiences primarily carbon-limited and only secondarily nitrogen-limited growth on bean leaves. Only a small proportion of the cells of a green fluorescent protein (GFP)-based P. syringae nitrate reductase bioreporter, LK2(pOTNas4), exhibited fluorescence on leaves. This suggests that only a subset of cells experience high nitrate levels or that nitrate assimilation is repressed by the presence of ammonium or other nitrogenous compounds in many leaf locations. While only a subpopulation of P. syringae consumes nitrate at a given time on the leaves, the ability of those cells to consume this resource would be strongly beneficial to those cells, especially in environments in which nitrate is the most abundant form of nitrogen.  相似文献   

3.
Experiments were carried out to clarify problems encountered in measuring metabolic and storage pool sizes of nitrate in wheat leaf sections with an in vivo nitrate reductase assay. The leaf sections were from seedlings grown on 15 millimolar nitrate. Data obtained show that the cessation of nitrite accumulation, used as an index of the active nitrate pool size, could be caused by lack of anaerobiosis in the assay system, the lack of energy for nitrate reduction, or a loss of nitrate reductase activity. Availability of nitrate was never the limiting factor in this system. It is concluded that pool sizes of nitrate cannot be determined in wheat leaves with the in vivo assays employed.  相似文献   

4.
The localization of enzymes responsible for nitrate assimilation and the generation of NADH for nitrate reduction were studied in corn (Zea mays L.) leaf blades. The techniques used effectively separated mesophyll and bundle sheath cells as judged by microscopic observations, enzymic assays, chlorophyll a/b ratios and photochemical activities. Nitrate reductase, nitrite reductase, and the nitrate content of leaf blades were localized primarily in the mesophyll cells, although some nitrite reductase was found in the bundle sheath cells. Glutamine synthetase, NAD-malate dehydrogenase, NAD-glyceraldehyde-3-phosphate dehydrogenase, and NADP-glutamate dehydrogenase were found in both types of cells, however, more NADP-glutamate dehydrogenase was found in the bundle sheath cells than in the mesophyll cells. These data indicate that the mesophyll cells are the major site for nitrate assimilation in the leaf blade because they contained an ample supply of nitrate and the enzymes considered essential for the assimilation of nitrate into amino acids. Because the specific activity of nitrate reductase was severalfold lower than the other enzymes involved in nitrate assimilation, nitrate reduction is indicated as the rate-limiting step in situ. A sequence of reactions is proposed for nitrate assimilation in the mesophyll cells of corn leaves as related to the C-4 pathway of photosynthesis.  相似文献   

5.
Several quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization. Immunoblots, quantitative RT-PCR, β-glucuronidase reporter analysis, and immunolocalization indicated that NRT1.7 is expressed in the phloem of the leaf minor vein and that its expression levels increase coincidentally with the source strength of the leaf. In nrt1.7 mutants, more nitrate was present in the older leaves, less 15NO3 spotted on old leaves was remobilized into N-demanding tissues, and less nitrate was detected in the phloem exudates of old leaves. These data indicate that NRT1.7 is responsible for phloem loading of nitrate in the source leaf to allow nitrate transport out of older leaves and into younger leaves. Interestingly, nrt1.7 mutants showed growth retardation when external nitrogen was depleted. We conclude that (1) nitrate itself, in addition to organic forms of nitrogen, is remobilized, (2) nitrate remobilization is important to sustain vigorous growth during nitrogen deficiency, and (3) source-to-sink remobilization of nitrate is mediated by phloem.  相似文献   

6.
The roles that leaf nitrate content and nitrate flux play in regulating the levels of nitrate reductase activity (NRA) were investigated in 8- to 14-day old maize (Zea mays L.) plants containing high nitrate levels while other environmental and endogenous factors were constant. The nitrate flux of intact plants was measured from the product of the transpiration rate and the concentration of nitrate in the xylem. NRA decreased when the seedlings were deprived of nitrate. The nitrate flux and the leaf nitrate content also decreased. When nitrate was resupplied to the roots, all three parameters increased.  相似文献   

7.
Physiological effects of different nitrate applications were studied using the C4 plant, Amaranthus powellii Wats. Plants were grown in a controlled environment chamber and watered daily with nutrient solutions containing 45, 10, 5, or 1 millimolar nitrate. Chloride and sulfate were used to keep the cation and phosphate concentrations constant. Total leaf nitrogen concentration, chlorophyll concentration, specific leaf mass, leaf area, relative growth rate, relative leaf growth rate, unit leaf rate (increase of dry mass per unit leaf area per day), net photosynthetic rate, and incident quantum yield decreased with decreasing nitrate concentration. The per cent decrease of unit leaf rate was similar to the decrease of light-saturated net photosynthetic rate; however, the decrease in relative growth rate was less than that of unit leaf rate because leaf area ratio (leaf area per unit dry mass) increased with decreasing nitrate concentration. Essential mineral concentrations per unit leaf area were about equal among all treatments. Leaf expansion, determined by stomatal density, decreased except for the 1 millimolar treatment which showed relatively more cell expansion but less cell division. Decreased nitrate application was correlated with higher osmotic potentials and lower pressure potentials (determined by pressure-volume curves), whereas leaf water potentials were equal among treatments. Even though total leaf area and shoot mass decreased with decreasing applied nitrate, the increase of the leaf area ratio may be related to selection for the highest possible growth rate.  相似文献   

8.
A cDNA clone was isolated from a maize (Zea mays L. cv W64A×W183E) scutellum λgt11 library using maize leaf NADH:nitrate reductase Zmnr1 cDNA clone as a hybridization probe; it was designated Zmnr1S. Zmnr1S was shown to be an NADH:nitrate reductase clone by nucleotide sequencing and comparison of its deduced amino acid sequence to Zmnr1. Zmnr1S, which is 1.8 kilobases in length and contains the code for both the cytochrome b and flavin adenine dinucleotide domains of nitrate reductase, was cloned into the EcoRI site of the Escherichia coli expression vector pET5b and expressed. The cell lysate contained NADH:cytochrome c reductase activity, which is a characteristic partial activity of NADH:nitrate reductase dependent on the cytochrome b and flavin adenine dinucleotide domains. Recombinant cytochrome c reductase was purified by immunoaffinity chromatography on monoclonal antibody Zm2(69) Sepharose. The purified cytochrome c reductase, which had a major size of 43 kilodaltons, was inhibited by polyclonal antibodies for maize leaf NADH:nitrate reductase and bound these antibodies when blotted to nitrocellulose. Ultraviolet and visible spectra of oxidized and NADH-reduced recombinant cytochrome c reductase were nearly identical with those of maize leaf NADH:nitrate reductase. These two enzyme forms also had very similar kinetic properties with respect to NADH-dependent cytochrome c and ferricyanide reduction.  相似文献   

9.
Nitrate reductase was found in leaves of apricot Prunus armeniaca, sour cherry P. cerasus, sweet cherry P. avium, and plum P. domestica, but not in peach P. persica, from trees grown in sand culture receiving a nitrate containing nutrient solution. Nitrate was found in the leaves of all species. Nitrate and nitrate reductase were found in leaves of field-grown apricot, sour cherry, and plum trees. The enzyme-extracting medium contained insoluble polyvinylpyrrolidone, and including dithiothreitol or mercaptobenzothiazole did not improve enzyme recovery. Inclusion of cherry leaf extract diminished, and peach leaf extract abolished, recovery of nitrate reductase from oat tissue. Low molecular weight phenols liberated during extraction were probably responsible for inactivation of the enzyme. The enzyme from apricot was two to three times as active as from the other species. Both nicotine adenine diphosphopyridine nucleotide and flavin mononucleotide were effective electron donors. The enzyme was readily induced in apricot leaves by 10 mm nitrate supplied through the leaf petiole.  相似文献   

10.
Exposure of the leaf canopy of corn seedlings (Zea mays L.) to atmospheric CO2 levels ranging from 100 to 800 μl/l decreased nitrate accumulation and nitrate reductase activity. Plants pretreated with CO2 in the dark and maintained in an atmosphere containing 100 μl/l CO2 accumulated 7-fold more nitrate and had 2-fold more nitrate reductase activity than plants exposed to 600 μl/l CO2, after 5 hours of illumination. Induction of nitrate reductase activity in leaves of intact corn seedlings was related to nitrate content. Changes in soluble protein were related to in vitro nitrate reductase activity suggesting that in vitro nitrate reductase activity was a measure of in situ nitrate reduction. In longer experiments, levels of nitrate reductase and accumulation of reduced N supported the concept that less nitrate was being absorbed, translocated, and assimilated when CO2 was high. Plants exposed to increasing CO2 levels for 3 to 4 hours in the light had increased concentrations of malate and decreased concentrations of nitrate in the leaf tissue. Malate and nitrate concentrations in the leaf tissue of seven of eight corn genotypes grown under comparable and normal (300 μl/l CO2) environments, were negatively correlated. Exposure of roots to increasing concentrations of potassium carbonate with or without potassium sulfate caused a progressive increase in malate concentrations in the roots. When these roots were subsequently transferred to a nitrate medium, the accumulation of nitrate was inversely related to the initial malate concentrations. These data suggest that the concentration of malate in the tissue seem to be related to the accumulation of nitrate.  相似文献   

11.
Experiments were conducted to determine whether the nitrate flux to the leaves or the nitrate content of the leaves regulated the nitrate reductase activity (NRA) in leaves of intact maize (Zea mays L.) seedlings having low water potentials (ψw) when other environmental and endogenous factors were constant. In seedlings that were desiccated slowly, the nitrate flux, leaf nitrate content, and NRA decreased as ψw decreased. The decrease in nitrate flux was caused by a decrease in both the rate of transpiration and the rate of nitrate delivery to the transpiration stream. Upon rewatering, the recovery in NRA was correlated with the nitrate flux but not the leaf nitrate content.  相似文献   

12.
cDNA clones were selected from a corn (Zea mays L.) leaf lambda gt11 expression library using polyclonal antibodies for corn leaf NADH:nitrate reductase. One clone, Zmnrl, had a 2.1 kilobase insert, which hybridized to a 3.2 kilobase mRNA. The deduced amino acid sequence of Zmnrl was nearly identical to peptide sequences of corn leaf NADH:nitrate reductase. Another clone, Zm6, had an insert of 1.4 kilobase, which hybridized to a 1.4 kilobase mRNA, and its sequence coded for chloroplastic NAD(P)+:glyceraldehyde-3-phosphate dehydrogenase based on comparisons to sequences of this enzyme from tobacco and corn. When nitrate was supplied to N-starved, etiolated corn plants, nitrate reductase, and glyceraldehyde-3-phosphate dehydrogenase mRNA levels in leaves increased in parallel. When green leaves were treated with nitrate, only nitrate reductase mRNA levels were increased. Nitrate is a specific inducer of nitrate reductase in green leaves, but appears to have a more general effect in etiolated leaves. In the dark, nitrate induced nitrate reductase expression in both etiolated and green leaves, indicating light and functional chloroplast were not required for enzyme expression.  相似文献   

13.
Use of protein in extraction and stabilization of nitrate reductase   总被引:23,自引:19,他引:4       下载免费PDF全文
The in vitro instability of nitrate reductase (EC 1.6.6.1) activity from leaves of several species of higher plants was investigated. Decay of activity was exponential with time, suggesting that an enzyme-catalyzed reaction was involved. The rate of decay of nitrate reductase activity increased as leaf age increased in all species studied. Activity was relatively stable in certain genotypes of Zea mays L., but extremely unstable in others. In all genotypes of Avena sativa L. and Nicotiana tabacum L. studied, nitrate reductase was unstable. Addition of 3% (w/v) bovine serum albumin or casein to extraction media prevented or retarded the decay of nitrate reductase activity for several hours. In addition, the presence of bovine serum albumin or casein in the enzyme homogenate markedly increased nitrate reductase activity (up to 15-fold), especially in older leaf tissue.  相似文献   

14.
The objective of this study was to identify factors which limit leaf nitrate reductase (NR) activity as decline occurs during flowering and beginning seed development in soybean (Glycine max [L.] Merr. cv Clark). Level of NR enzyme activity, level of reductant, and availability of NO3 as substrate were evaluated for field-grown soybean from flowering through leaf senescence. Timing of reproductive development was altered within one genotype by (a) exposure of Clark to an artificially short photoperiod to hasten flowering and podfill, and (b) the use of an early flowering isoline. Nitrogen (N) was soil-applied to selected plots at 500 kilograms per hectare as an additional variable. Stem NO3 concentration and in vivo leaf NR activity were significantly correlated (R2 = 0.69 with nitrate in the assay medium and 0.74 without nitrate in the medium at P = 0.001) across six combinations of reproductive and soil N-treatment. The supply of NO3 from the root to the leaf tissue was the primary limitation to leaf NR activity during flowering and podfill. Levels of NR enzyme and reductant were not limiting to leaf NR activity during this period.  相似文献   

15.
Growth and glucuronidase (GUS) activity were followed in the cotyledons and rosette leaves of Arabidopsis thaliana (L.) Heynh (ecotype Wassilewskija) plants transformed with the GUS gene under the control of the cytokinin-dependent promoter of the ARR5 gene. The presence of active cytokinins in plant tissues was assessed from GUS activity. Plants were grown for three weeks on the nitrate-or ammonium-containing nutrient medium. In plants grown on ammonium nutrition, cotyledon and leaf growth was substantially suppressed as compared with plants feeding with nitrates. In correspondence with this growth inhibition, GUS activity was markedly lower in plant leaves grown on the ammonium-containing medium. This indicated a reduction in these leaves of active cytokinin forms capable of activation of the promoter for the ARR5 gene. On both nitrogen sources, GUS activity increased during leaf growth and dropped sharply after growth ceasing. This indicated that leaf growth depended on the cytokinin content in them. High GUS activity was detected in petioles and leaf conductive system, indicating leaf providing with cytokinins along the conductive vessels. A sharp drop in the GUS activity after leaf growth stoppage coincided in time with GUS activation in the leaf positioned above this leaf. This indicated possible cytokinin redistribution in the plant; its content could be a limiting factor for leaf growth. A higher growth rate in plants on nitrate nitrogen nutrition and corresponding high GUS activity in them are discussed in terms of cytokinin signaling role in leaf growth regulation mediated by nitrate.  相似文献   

16.
The nitrate reductase activity of 5-day-old whole corn roots was isolated using phosphate buffer. The relatively stable nitrate reductase extract can be separated into three fractions using affinity chromatography on blue-Sepharose. The first fraction, eluted with NADPH, reduces nearly equal amounts of nitrate with either NADPH or NADH. A subsequent elution with NADH yields a nitrate reductase which is more active with NADH as electron donor. Further elution with salt gives a nitrate reductase fraction which is active with both NADH and NADPH, but is more active with NADH. All three nitrate reductase fractions have pH optima of 7.5 and Stokes radii of about 6.0 nanometers. The NADPH-eluted enzyme has a nitrate Km of 0.3 millimolar in the presence of NADPH, whereas the NADH-eluted enzyme has a nitrate Km of 0.07 millimolar in the presence of NADH. The NADPH-eluted fraction appears to be similar to the NAD(P)H:nitrate reductase isolated from corn scutellum and the NADH-eluted fraction is similar to the NADH:nitrate reductases isolated from corn leaf and scutellum. The salt-eluted fraction appears to be a mixture of NAD(P)H: and NADH:nitrate reductases.  相似文献   

17.
NADH:nitrate reductase was extracted from corn leaves (Zea mays L. W64A × W182E) and purified on blue Sepharose. After the nitrate reductase was further purified by polyacrylamide gel electrophoresis, it was used to immunize mice and a rabbit. Western blots of crude leaf extracts were used to demonstrate monospecificity of the mouse ascitic fluids and the rabbit antiserum. The electrophoretic properties of purified corn and squash NADH:nitrate reductases in both native and denatured states were shown to be similar using western blotting with mouse ascitic fluid. The corn leaf enzyme has a 115,000 polypeptide subunit like that of squash. Western blots could detect 3 to 10 nanograms of nitrate reductase protein. But the detection of proteolytic degradation products using western blotting was inconsistent and remains to be established. An enzyme-linked immunosorbent assay (ELISA) was developed for quantifying nitrate reductase protein in the crude extracts of corn leaves. Using a standard curve based on nitrate reductase activity, the ELISA for corn nitrate reductase could detect 0.5 to 10 nanograms of nitrate reductase protein and was adequately sensitive for quantitative analysis of nitrate reductase in crude extracts of leaves even when activity levels were very low. When the ELISA was used to compare the nitrate reductase protein content of corn roots and leaves, these tissues were estimated to contain 0.24 to 0.5 and 4 to 5 micrograms nitrate reductase protein/gram root and leaf, respectively.  相似文献   

18.
The seasonal change in leaf water potential and its components, stomatal resistance, specific leaf weight, photosynthesis rate, the activities of ribulose-1,5-bisphosphate carboxylase and nitrate reductase, and soluble proteins were measured in flag leaves (ninth from base in position), seventh and fifth leaves of wheat Triticum aestivum L. cv Kalyansona. Flag leaves had a lower water and solute potential and lower or equal turgor pressure than seventh and fifth leaves. These differences were found to be independent of environment. The rate of photosynthesis and nitrate reductase activity were always lower in fifth and seventh leaves than in flag leaf. The photosynthetic efficiency in flag leaves appeared to be associated with lower stomatal resistance and higher specific leaf weight. The relations between leaf water potential and relative water content showed a change with leaf position. This change possibly allows flag leaf to maintain its functional efficiency despite its lower water potential.  相似文献   

19.
Abscisic acid (ABA), auxins, and cytokinins (CKs) are known to be closely linked to nitrogen signaling. In particular, CKs control the effects of nitrate availability on plant growth. Our group has shown that treatment with high nitrate concentrations limits root growth and leaf development in maize, and conditions the development of younger roots and leaves. CKs also affect source-sink relationships in plants. Based on these results, we hypothesized that CKs regulate the source-sink relationship in maize via a mechanism involving complex crosstalk with the main auxin indole-3-acetic acid (IAA) and ABA. To evaluate this hypothesis, various CK metabolites, IAA, and ABA were quantified in the roots and in source and sink leaves of maize plants treated with high and normal nitrate concentrations. The data obtained suggest that the cis and trans isomers of zeatin play completely distinct roles in maize growth regulation by a complex crosstalk with IAA and ABA. We demonstrate that while trans-zeatin (tZ) and isopentenyladenine (iP) regulate nitrate uptake and thus control final leaf sizes, cis-zeatin (cZ) regulates source and sink strength, and thus controls leaf development. The implications of these findings relating to the roles of ABA and IAA in plants’ responses to varying nitrate concentrations are also discussed.  相似文献   

20.
Synthesis and degradation of barley nitrate reductase   总被引:21,自引:13,他引:8       下载免费PDF全文
Nitrate and light are known to modulate barley (Hordeum vulgare L.) nitrate reductase activity. The objective of this investigation was to determine whether barley nitrate reductase is regulated by enzyme synthesis and degradation or by an activation-inactivation mechanism. Barley seedling nitrate reductase protein (cross-reacting material) was determined by rocket immunoelectrophoresis and a qualitative immunochemical technique (western blot) during the induction and decay of nitrate reductase activity. Nitrate reductase cross-reacting material was not detected in root or shoot extracts from seedlings grown without nitrate. Low levels of nitrate reductase activity and cross-reacting material were observed in leaf extracts from plants grown on nitrate in the dark. Upon nitrate induction or transfer of nitrate-grown etiolated plants to the light, increases in nitrate reductase activity were positively correlated with increases in immunological cross-reactivity. Root and shoot nitrate reductase activity and cross-reacting material decreased when nitrate-induced seedlings were transferred to a nitrate-free nutrient solution or from light to darkness. These results indicate that barley nitrate reductase levels are regulated by de novo synthesis and protein degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号