首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new concept to design phosphorescent nanospheres is presented. The spheres are distinguishable by their individual decay time and spectral distribution of their emission spectra. They are composed of a phosphorescent ruthenium metal-ligand complex (MLC) dissolved, along with certain strongly fluorescent cyanine dyes, in modified polyacrylonitrile-based nanospheres. Since the emission spectrum of the MLC overlaps the absorption spectrum of the cyanine and both the MLC (the donor) and the cyanine (the acceptor) are in close spatial proximity, efficient resonance energy transfer (RET) does occur. Thus, the nanospheres emit dual luminescence, one from the acceptor dye and the other from the donor MLC. Variation of the concentrations of the acceptor dye results in a varying efficiency of RET, thus making the spheres distinguishable. Hence, a set of multiplexable sphere labels is obtained by using one MLC (acting as the phosphorescent donor and present in constant concentration) and one acceptor dye (which varies in terms of both spectral properties and concentration). The nanospheres can be identified by the emission maximum (reflecting the kind of acceptor dye) and by decay time (reflecting its concentration). Since the same donor MLC is used throughout, all nanospheres can be excited with the same light source.  相似文献   

2.
The ability of a localized conformational searching method to predict probe orientation was tested on model nucleic acid and protein structures and applied to the prediction of skeletal myosin integrity upon chemical modification of its reactive thiols. Double-stranded oligonucleotides were chemically labeled with donor and acceptor resonance energy transfer probes at each end for distance determinations. These measurements were made independently using a terbium chelate as a donor to each of four chemically and spectroscopically distinct acceptor probes from the xanthene and cyanine dye groups. The choice of acceptor significantly affected the separation distance measured. Conformational searching algorithms on the atomic model corrected for the differences to within 0.2 nm on average. Verifying its usefulness on proteins, the localized conformational searching method determined the orientation of a fluorescent probe on RNase A that corresponds closely to available crystallographic models of the labeled protein (RMS deviation = 0.1 nm). Also, analysis of the symmetry of the fluorophores' structures suggests why FRET orientation factors are often closer to their dynamic average value than might normally be expected. Furthermore, the computational method provides insights about FRET data that are important for assessing the stability of the alpha-helix separating the SH1 and SH2 reactive thiols in skeletal myosin.  相似文献   

3.
4.
Detection of actin assembly by fluorescence energy transfer   总被引:18,自引:10,他引:8       下载免费PDF全文
Fluorescence energy transfer was used to measure the assembly and disassembly of actin filaments. Actin was labeled at cysteine 373 with an energy donor (5-iodoacetamidofluorescein) or an energy acceptor (tetramethylrhodamine iodoacetamide or eosin iodoacetamide). Donor- labeled actin and acceptor-labeled actin were coassembled. The dependence of the transfer efficiency on the mole fraction of acceptor- labeled actin showed that the radial coordinate of the label at cysteine 373 is approximately 35 A, which means that this site is located near the outer surface of the filament. The distance between a donor and the closest acceptor in such a filament is 58 A. The increase in fluorescence after the mixing of actin filaments containing both donor and acceptor with unlabeled filaments showed that there is a slow continuous exchange of actin units. The rate of exchange was markedly accelerated when the filaments were sonicated. The rapid loss of energy transfer caused by mechanical shear probably resulted from an increase in the number of filament ends, which in turn accelerated the exchange of monomeric actin units. Energy transfer promises to be a valuable tool in characterizing the assembly and dynamics of actin and other cytoskeletal and contractile proteins in vitro and in intact cells.  相似文献   

5.
This paper demonstrates the use of a near-infrared (NIR) dye as a non-covalent label for human serum albumin (HSA). The dye is a water soluble, heptamethine cyanine dye. The utility of the dye as a tracer illustrating the binding of various drugs to HSA is demonstrated via affinity capillary electrophoresis with near-infrared laser-induced fluorescence detection (ACE-NIR-LIF). Additionally, the factors affecting the separation of relevant species were investigated. The change in quantum yield of the dye upon complexation with HSA was calculated. Spectrophotometric measurements were conducted to study the stoichiometry of the dye albumin complex.  相似文献   

6.
R Takashi  A Muhlrad  J Botts 《Biochemistry》1982,21(22):5661-5668
Fluorescence energy transfer was used to examine the spatial proximity between two key side chains in myosin subfragment 1 (S-1), viz., the reactive thiol (SH1) located on the C-terminal 20K tryptic fragment and the reactive lysyl (RLR) on the N-terminal 27K tryptic fragment of S-1 heavy chain. S-1 was specifically labeled at SH1 with an energy donor, N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (AEDANS), and at RLR with an energy acceptor, 2,4,6,-trinitrobenzenesulfonate (TNBS). Prior blocking of SH1 with AEDANS increased the pK of RLR from 9.04 to 9.42. Trinitrophenylation of SH1-blocked S-1 was about 50% slower and sharply reduced the Ca2+ ATPase activity. Reciprocally, blocking of RLR with TNBS slowed the rate of reaction of SH1 and AEDANS by 40-60%. Addition of the second label does not grossly alter the conformation resulting from the first label. S-1 labeled at RLR with TNBS and at SH1 with optically inert iodoacetamide shows the same TNP difference spectrum +/- MgADP (lambda min 365 nm) as S-1 with S 1 free. Also, S-1 labeled at SH1 with AEDANS and at RLR with an optically inert methyl group shows the same AEDANS emission spectrum (lambda em max 475 nm), excited-state lifetime (tau = 20.3 ns) and rotational correlation time (phi = 106 ns) as S-1 with RLR free. When the decrease of either the quantum yield or the excited-state lifetime of the donor in the absence and presence of the acceptor was measured, the energy transfer efficiency was found to be 70%. The apparent interchromophore distance was calculated to be 2.6 nm through the use of the F?rster equation with an uncertainty of less than 12%.  相似文献   

7.
A Trp-free αA-crystallin mutant (W9F) was prepared by site-directed mutation. This mutant appears to be identical to the wild-type in terms of conformation (secondary and tertiary structures). W9F was labeled with a sulfhydryl-specific fluorescent probe, 2-(4′-maleimidylanilino) naphthalene-6-sulfonate (MIANS), and used in a subunit exchange between αA- and αA-crystallins as well as between αA- and αB-crystallins, studied by measurement of fluorescence resonance energy transfer. Energy transfer was observed between Trp (donor, with emission maximum at 336 nm) of wild-type αA- or αB-crystallin and MIANS (acceptor, with absorption maximum at 313 nm) of labeled W9F when subunit exchange occurred. Time-dependent decrease of Trp and increase of MIANS fluorescence were recorded. The exchange was faster at 37°C than at 25°C. The energy transfer efficiency was greater between homogeneous subunits (αA-αA) than between heterogeneous subunits (αA-αB). A previous exchange study with isoelectric focusing indicated a complete but slow exchange between αA and αB subunits. The present study showed that the exchange was a fast process, and the different energy transfer efficiencies between αA-αA and αA-αB indicated that αA- and αB-crystallins were not necessarily structurally equivalent.  相似文献   

8.
Fluorescence energy transfer is potentially a useful technique for obtaining structural and dynamic information on duplex and branched DNA molecules suitably labeled with donor and acceptor dyes. We have assessed the accuracy and limitations of FET measurements in nucleic acids with respect to the localization of the dyes and the flexibility of the dye-DNA linkages. A nine base-pair duplex oligonucleotide was synthesized with donor and acceptor dyes linked at the opposing 5' termini by alkyl chains. A careful analysis of the fluorescence decay of the donor revealed that the donor-acceptor distance in this molecule was not well defined, but was described by a rather broad distribution. The mean donor-acceptor distance and the distribution of distances have been recovered from the donor decay. Orientational effects on energy transfer have been included in the analysis. The implications of these findings for FET measurements in nucleic acids are considered.  相似文献   

9.
A homogeneous high-throughput screening method based on time-resolved fluorescence resonance energy transfer (TR-FRET) for the measurement of calcium-dependent multimerization of an EF-hand protein, sorcin, is described. The assay is based on a specific sorcin binding peptide conjugated either with an intrinsically highly fluorescent europium chelate (donor) or an Alexa Fluor 700 fluorophore (acceptor). Addition of calcium results in multimerization of sorcin, allowing several peptides to bind simultaneously to the epitopes of the multimeric protein complex, and the proximity of peptides labeled either with donor or acceptor label results in fluorescence resonance energy transfer between the 2 labels. When no calcium is present, the protein remains in a monomer form, and thus no FRET can take place. In the optimized assay construct, the assay was performed in 45 min, and a more than 20-fold signal-to-background ratio was achieved. The reversibility of sorcin multimerization was shown by chelating free calcium with ethylenediamine tetraacetic acid (EDTA). The developed homogeneous assay can be used in screening molecules that either inhibit or enhance multimerization of sorcin, and the assay format is applicable to various noncompetitive high-throughput screening assays detecting protein multimerization reactions.  相似文献   

10.
A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N-SRh-C10). This was done by observing the sites of RET in cells doubly labeled with N-SRh-C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.  相似文献   

11.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   

12.
Investigation of protein-protein associations is important in understanding structure and function relationships in living cells. Using Förster-type resonance energy transfer between donor and acceptor labeled monoclonal antibodies we can assess the cell surface topology of membrane proteins against which the antibodies were raised. In our current work we elaborated a quantitative image microscopic technique based on the measurement of fluorescence intensities to calculate the energy transfer efficiency on a pixel-by-pixel basis. We made use of the broad excitation and emission spectrum of cellular autofluorescence for background correction of images. In addition to the reference autofluorescence images (UV background) we recorded three fluorescent images (donor, acceptor and energy transfer signal) of donor-acceptor double labeled samples, and corrected for spectral spillage of the directly excited donor and acceptor fluorescence into the energy transfer image. After careful image registration we were able to calculate the energy transfer efficiency on a pixel-by-pixel basis. In this paper, we also present a critical comparison between results obtained with this method and other approaches (photobleaching and flow cytometric energy transfer measurements).  相似文献   

13.
Abstract

Fluorescence resonance energy transfer (FRET) dye labeled cassettes and terminators with one or more donor dyes (fluorescein) and acceptor dye (rhodamine dyes) with benzofuran or tyrosine linker moieties were synthesized. These terminators were evaluated for their energy transfer and DNA sequencing potential using thermostable DNA polymerase.  相似文献   

14.
The location of chicken erythrocyte H5 histone relative to the axis the 30 nm chromatin fibre axis has been investigated by diffusion-enhanced energy transfer. In this investigation, a neutral lanthanide chelate as donor and a fluorescent probe specific to H5 as acceptor have been used. The acceptor probe consists of H5 antibody Fab' fragment, which has been labeled with 5-iodoacetamidofluorescein (5-IAF). Using H5 fragments we have shown by ELISA that the antibodies recognized the N- and C-terminal ends of this histone. A neutral chelate of terbium (TbHED3A) was chosen as a suitable donor for energy transfer with IAF-labelled Fab' (Fab'-IAF) bound to H5 in various chromatin structures. The ionic strength dependence of the energy transfer from TbHED3A to chromatin-bound Fab'-IAF was used to estimate the accessibility and the location of the Fab' in chromatin. The rate constants for energy transfer, obtained from the lifetimes of the TbHED3A excited state in presence and absence of acceptor, indicated a decrease in transfer efficiency upon increase of salt concentration from 5 to 80 mM NaCl. This can be correlated with the chromatin folding occurring in this ionic strength range and is consistent with the location of at least some of the N and C-termini of H5 within the condensed chromatin structure.  相似文献   

15.
Human complement protein C8 was labeled with the fluorescent chromophores fluorescein-5-isothiocyanate (FITC), 3-(4-isothiocyanatophenyl)-7-diethylamine-4-methyl coumarin (IPM), eosin-5-isothiocyanate (EOS), or Texas Red (sulforhodamine-101-sulfonyl chloride; TR) with only minor reduction in the specific hemolytic activity of the protein. The distribution of C5b-8 complexes bound to sheep erythrocyte membranes was investigated by monitoring fluorescence resonance energy transfer (RET) between the following RET donor/acceptor pairs of labeled C8: FITC-C8/EOS-C8, IPM-C8/EOS-C8, and FITC-C8/TR-C8. On binding to membranes containing pre-formed C5b67 complexes, specific RET was detected for each of the donor/acceptor pairs of labeled C8 investigated. In contrast, no energy transfer was observed for these RET donor/acceptor pairs of labeled C8 incubated in the presence of control membranes or in membrane-free solution. On the basis of a consideration of the transfer efficiency that would be expected for donor/acceptor pairs of labeled C8 that were uniformly dispersed on the membrane surface, these results suggest that C5b-8 complexes are aggregated into polymeric clusters when membrane-bound. The efficiency of donor-C8 to acceptor-C8 RET--and the hemolytic activity of membrane-bound C5b-8 (in the absence of C9)--are both related to the surface density of membrane-bound C5b67, suggesting that the physical clustering of the membrane-inserted C5b-8 complex may be related to the expression of its cytolytic activity.  相似文献   

16.
Lanthanide chelates used as donors offer several advantages over classical fluorescence probes in resonance energy transfer distance measurements. One of these advantages is that energy transfer can be conveniently measured using sensitized acceptor decay measurements. In these measurements a long microsecond lifetime of the lanthanide donor and a short nanosecond lifetime of the acceptor allow elimination of a signal from the unquenched donor. Therefore, the decay of sensitized acceptor emission reflects decay properties of the donor engaged in energy transfer. The purpose of this work is to point out the importance of the fact that the amplitude of the sensitized acceptor signal is dependent on the resonance energy transfer rate constant. Thus, in the case where there are two or more populations of donors with different energy transfer rate constants, the relative amplitudes of corresponding decay components observed in sensitized acceptor emission do not represent the relative populations of the donors. We use simulations to show that these effects can be very significant. A minor population of donors with a high rate of energy transfer can produce sensitized acceptor decay which is dominated by a decay component corresponding to this minor donor population. Using a simple experimental system of rapid diffusion limit energy transfer between a europium chelate and Cy5 acceptor we show that the predicted dependency of sensitized acceptor decay amplitude on the energy transfer rate is indeed observed. We suggest that the relative importance of decay components observed in sensitized acceptor emission should be evaluated after an appropriate correction of their values such that they properly reflect possible different populations of donors. We describe a method to perform such correction.  相似文献   

17.
M Tourbez  F Pochon 《Biochimie》1986,68(9):1079-1086
Pyrenebutylmethylphosphonofluoridate reacts with trypsin and elastase to yield a conjugate with a stoichiometry of one fluorescent label per enzyme molecule as already observed with chymotrypsin. The kinetics of inactivation indicate that the serine active center of the proteases is involved in the labeling reaction. The binding of the proteases to alpha 2-macroglobulin does not modify the specificity of the reaction but drastically diminishes the labeling rate which also depends upon alpha 2-macroglobulin protease binding ratio. Dynamic quenching of the conjugated pyrene moiety by acrylamide, and iodide ions is markedly reduced upon reaction of the protease with alpha 2-macroglobulin, indicating a reduced accessibility of the protease active center in the complex. Singlet--singlet energy transfer measurements from the donor pyrene labeled active center of the proteases to the alpha 2-macroglobulin acceptor labeled thiol groups which are liberated upon protease fixation, gave a rough estimate of the distance (about 25 A) between the active center of the two alpha 2-macroglobulin bound protease molecules.  相似文献   

18.
We describe measurements of lateral diffusion in membranes using resonance energy transfer. The donor was a rhenium (Re) metal-ligand complex lipid, which displays a donor decay time near 3 micros. The long donor lifetime resulted in an ability to measure lateral diffusion coefficient below 10(-8) cm(2)/s. The donor decay data were analyzed using a new numerical algorithm for calculation of resonance energy transfer for donors and acceptors randomly distributed in two dimensions. An analytical solution to the diffusion equation in two dimensions is not known, so the equation was solved by the relaxation method in Laplace space. This algorithm allows the donor decay in the absence of energy transfer to be multiexponential. The simulations show that mutual lateral diffusion coefficients of the donor and acceptor on the order of 10(-8) cm(2)/s are readily recovered from the frequency-domain data with donor decay times on the microsecond timescale. Importantly, the lateral diffusion coefficients and acceptor concentrations can be recovered independently despite correlation between these parameters. This algorithm was tested and verified using the donor decays of a long lifetime rhenium lipid donor and a Texas red-lipid acceptor. Lateral diffusion coefficients ranged from 4.4 x 10(-9) cm(2)/s in 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) at 10 degrees C to 1.7 x 10(-7) cm(2)/s in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 35 degrees C. These results demonstrated the possibility of direct measurements of lateral diffusion coefficients using microsecond decay time luminophores.  相似文献   

19.
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra‐red spectroscopy (FT‐IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern–Volmer quenching constants and binding constants for the MS–HSA system at 293, 298 and 303 K were obtained from the Stern–Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS–HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three‐dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS–HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.  相似文献   

20.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号